Prepared By: Bruce Koetter, P.E. Bruce Koetter, P.E. Reviewed By: Janel Man-Jamel Demir, P.E.

CITY OF SUNNYVALE

MASTER PLAN AND PRIMARY TREATMENT DESIGN

TECHNICAL MEMORANDUM

ODOR TESTING REPORT: **MASTER PLAN**

> FINAL December 2013

CITY OF SUNNYVALE

MASTER PLAN AND PRIMARY TREATMENT DESIGN

TECHNICAL MEMORANDUM

ODOR TESTING REPORT: MASTER PLAN

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION/SUMMARY	1
2.0	BACKGROUND	1
3.0	DESCRIPTION OF TESTING3.1Testing Rational3.2Air Sample Collection Protocol3.3Reduced Sulfur Compound Testing3.4Volatile Organic Compound Testing3.5Hydrogen Sulfide (H2S)3.6Wastewater Analysis	
4.0	 PRESENTATION OF TESTING RESULTS 4.1 Air Sampling Test Results 4.2 Liquid Sampling Test Results 	
5.0	OBSERVATIONS/DISCUSSION OF RESULTS	14

APPENDIX - ALS Environmental RSC/VOC Reports

LIST OF TABLES

Table 1	Location and Description of RSC/VOC Samples	8
Table 2	SC/VOC Test Results Summary	9
Table 3	Liquid Test Results 1	5

LIST OF FIGURES

Figure 1	Site Plan	
Figure 2	Gas Sampling Trains	
Figure 3	Effects of pH on Distribution of Hydrogen Sulfide (H ₂ S) in Water	
Figure 4	CM Room Exhaust Odalog Chart	11
Figure 5	Primary Influent Channel Odalog Chart	
Figure 6	Primary Effluent Channel Odalog Chart	13

1.0 INTRODUCTION/SUMMARY


The City of Sunnyvale is currently in the process of upgrading their existing Water Pollution Control Plant (WPCP) as part of a master planning/primary facilities project. This includes the development of odor control strategies as part of preparing the near-term and long-term recommendations for process improvements to the WPCP. One of the assigned planning tasks is to provide "consideration of odor control and corrosion control systems" while performing the Master Plan analysis. In order to properly evaluate, select and size odor control systems it is necessary to know which odorous compounds are being emitted from each source and in what concentrations. On-site odor testing was performed at the WPCP on September 9 through 11, 2013. The weather conditions on the days of testing were mostly sunny with highs in the mid-80s and lows in the mid-60s. The purpose of this technical memorandum (TM) is to describe the testing that was performed, present the test results, and offer discussion on the meaning of the results and how they may impact recommendations for implementing odor control as part of the Master Plan and the Primary Treatment Facility design.

This TM does not include recommendation on odor control design criteria or an evaluation of odor control technologies. This analysis will be presented in a separate TM.

2.0 BACKGROUND

The Sunnyvale WPCP was initially built in the 1950s and with several additions throughout the years it has grown to a tertiary treatment facility with an average dry weather flow rate of 14 million gallons per day (mgd). The current treatment process includes aerated grit removal, ten primary sedimentation basins and two oxidation ponds covering about 440 acres which provide secondary treatment. Tertiary treatment is provided through three fixed growth reactors (FGR), four air flotation tanks (AFT) for algae removal, dual-media filtration, chlorine gas for disinfection, and sodium bisulfite for chlorine removal. The chlorine gas is currently in the process of being replaced with hypochlorite.

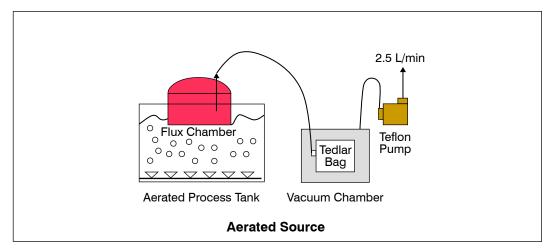
Biosolids are pumped to one of four anaerobic digesters. Digested biosolids are pumped to nine solar-tile dewatering beds. The solids sit in the dewatering beds for about three weeks before they are moved to an asphalt pad where they dry even further before they are stockpiled and eventually disposed of at the neighboring landfill. Refer to Figure 1 for a site plan of the facility.

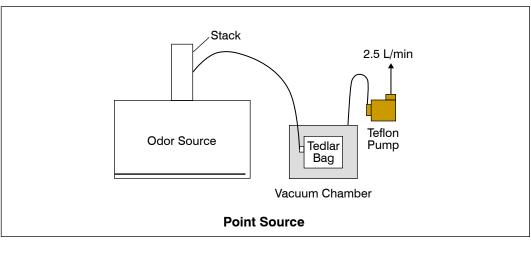
- Main WPCP Boundary
 - Air Sample Locations
 - Liquid Sample Locations
 - Odalog H₂S Monitor Locations

Figure 1 SITE PLAN ODOR TESTING REPORT MASTER PLAN AND PRIMARY TREATMENT DESIGN CITY OF SUNNYVALE

3.0 DESCRIPTION OF TESTING

3.1 Testing Rational


The Sunnyvale WPCP wastewater treatment process is typical of other wastewater treatment plants (WWTPs) in some ways but quite unique in others. The influent pump station, primary sedimentation tanks, fixed growth reactors, filters and chlorine contact tanks are common to many plants but the 440 acre oxidation ponds, AFTs for algae removal and solids dewatering processes are unique. Odor testing at WWTPs is typically performed in areas that generate the most odors and H2S emissions. These areas typically include the headworks, primary sedimentation tanks, solids handling facilities and potentially fixed growth reactors (trickling filters). As a result, the odor testing effort summarized herein was focused in these areas of the WPCP. The sample locations and the analyses were selected with care to identify and quantify the odor causing compounds at the WPCP.


Like most odor evaluations at WWTPs, the odor evaluation included liquid and air testing, as well as on-site hydrogen sulfide testing, in order to determine which compounds are present and in what concentrations. Air testing included reduced sulfur compound (RSC) and volatile organic compound (VOC) testing in order to determine which potentially odorous compounds were in the air and in what concentrations. This information is absolutely necessary when selecting and sizing odor control equipment. If an unusual compound, or a common compound with an unusually high concentration, is present and not accounted for in the selection and design of the odor control system, poor performance or system failure can occur. Liquid testing included various analyses to determine the potential for sulfide formation, which is a key parameter used to predict the potential for H2S generation and release. Hydrogen sulfide testing was conducted because it is an indicator of odor that can be measured easily.

Odor panel testing is often conducted at WWTPs but was not performed on this project. Odor panel testing is most useful when the site must demonstrate compliance with regulatory odor guidelines. In Sunnyvale's case, no odor complaints have been received and no regulatory restrictions are in place, therefore, odor panel testing was deemed unnecessary. Furthermore, testing for RSC and VOC is considered to provide more useful data for the project.

3.2 Air Sample Collection Protocol

Air samples for RSC and VOC analyses were collected in three-liter chemically-inert Tedlar bags with a polypropylene access valve. Air samples from aerated sources, quiescent sources, and point sources were collected using a vacuum chamber and small battery-operated Teflon pump connected by tubing as shown in Figure 2. In all cases, the

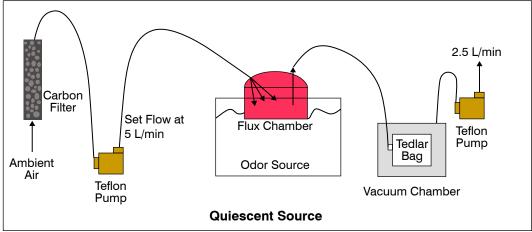


Figure 2 GAS SAMPLING TRAINS ODOR TESTING REPORT MASTER PLAN AND PRIMARY TREATMENT DESIGN CITY OF SUNNYVALE sample container was filled with the sample and then purged to "condition" the container and remove any background container contaminants prior to collection of the final sample for RSC and VOC analysis.

The air samples were collected from each source and shipped to ALS Environmental via overnight express courier where they were analyzed the following day.

3.3 Reduced Sulfur Compound Testing

The samples were analyzed for 20 sulfur compounds per ASTM D 5504-08 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are measured against the initial calibration curve for methyl mercaptan.

3.4 Volatile Organic Compound Testing

The samples were also analyzed for volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph/mass spectrometer (GC/MS) interfaced to a whole-air pre-concentrator.

3.5 Hydrogen Sulfide (H₂S)

 H_2S can be measured in the field using H_2S analyzers that provide instantaneous readings and/or continuous data logging. Since it is easy to measure, H_2S is often used in wastewater situations as an odor indicator. In many municipal wastewater applications when the H_2S is controlled, the odor problem will be eliminated. H_2S is slightly heavier than air and moderately soluble in water. H_2S dissolves in water and disassociates in accordance with the following reversible reaction:

$$H_2S \leftrightarrow HS^- + H^+$$

The distribution of the above species is a function of pH, as shown graphically in Figure 3. The relative H_2S concentration increases with decreasing pH. Only the dissolved sulfides can escape from the liquid (as H_2S). Hydrogen sulfide is formed under anaerobic or septic (absence of oxygen) conditions.

On this project, H_2S was measured in the laboratory as part of the RSC analysis but it was also measured at three locations in the field using Odalog H_2S analyzers manufactured by Detection Instruments. The Odalog is an H_2S analyzer specifically designed to be installed in manholes and other harsh locations that will log the H_2S concentrations for up to 30 days at a time. The Odalog is useful because it will show diurnal H_2S patterns which cannot be captured with other instruments.

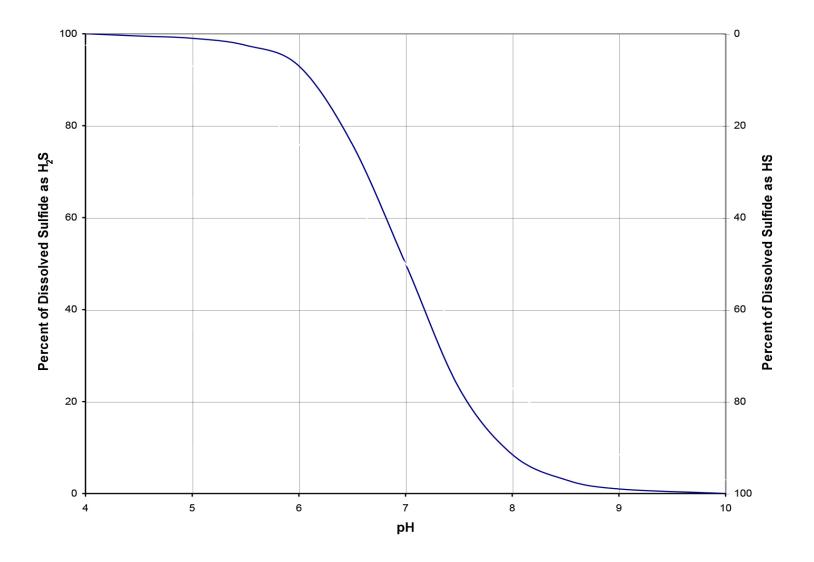


Figure 3 EFFECTS OF pH ON DISTRIBUTION OF H₂S IN WATER ODOR TESTING REPORT MASTER PLAN AND PRIMARY TREATMENT DESIGN CITY OF SUNNYVALE

3.6 Wastewater Analysis

Sulfides, which are the dissolved liquid form of hydrogen sulfide, are formed biologically in the wastewater collection system in the absence of dissolved oxygen. Sulfates are reduced to sulfides in the absence of oxygen or nitrates (anaerobic conditions) in the slime layer of force mains and gravity sewers. H_2S is moderately soluble in water.

The rate of sulfide production by the slime layer is related to the following factors:

- Wastewater organic strength.
- Dissolved oxygen (D.O.).
- pH.
- Temperature.
- Velocity.
- Detention time in the force main or gravity sewer.

Within a D.O. range of 0.1 to 0.5 milligrams per liter (mg/L), anaerobic bacteria reduce sulfates to sulfides. Low velocities can promote the formation of thicker slime layers. As detention time increases, oxygen depletion occurs and the conditions favor sulfide production. The rate of sulfide production can double for every 10°C increase in temperature. pH governs the ratio of H_2S gas and ions in solution. Sulfide generation is directly proportional to detention time in the sewer.

The formation of sulfides is an important parameter when predicting the potential for H_2S generation and release. For this study, samples for sulfide analyses were collected to assist in locating the problem areas. In addition to analytical testing for sulfides, field measurements of pH, oxidation reduction potential (ORP), and temperature were made. The sulfides were measured in the wastewater using a LaMotte Sulfide Test Kit (Model P-70).

The pH and ORP of the wastewater was measured using a Digi-Sense Digital pH/ORP Meter (Model 5938-50). The ORP is measured in millivolts (mV) and is an indication of the potential to reduce sulfates to sulfides. In an aerobic environment, bacteria use dissolved oxygen for respiration and sulfate is not reduced to sulfide. In an anaerobic environment with a low ORP (less than zero), bacteria use the sulfate for respiration, reducing the sulfate to sulfide. The following are ranges of ORP:

ORP (mV)	Condition					
+50 No action by anaerobic bacteria						
0 Poor anaerobic bacteria activity						
-100 to -200	Maximum efficiency for anaerobic bacteria activity					
-50 to -300 Favored by sulfate reducing bacteria for production of s						

4.0 PRESENTATION OF TESTING RESULTS

4.1 Air Sampling Test Results

4.1.1 RSC/VOC Results

Four (4) emission points were selected for RSC/VOC sampling and testing based on experiences at similar WWTPs and a preliminary site survey. These locations are shown on Figure 1 and include the channel monster room exhaust at the influent pump station, fixed growth reactor exhaust, AFT effluent channel, and sludge drying beds. These locations were selected based on possible relevance to off-site odors, either because of high air flow rates, RSC/VOC potential or both. Table 1 lists the four sampling locations and the significance of each.

Table 1Location and Description of RSC/VOC SamplesMaster Plan and Primary Treatment DesignCity of Sunnyvale								
Location	Description							
Channel Monster Room Exhaust	A sample was taken from the exhaust fan on the roof of the primary building. The north fan was in service at the time of testing but the south fan was out of service. This fan draws air out of the channel monster room. Since this sample was essentially drawn from the headspace above the influent raw wastewater it was assumed that the RSC/VOC results for this source could be applied to the primary clarifiers.							
Fixed Growth Reactor Exhaust	The FGRs are not covered and use four 5,000 cfm fans to supply the air needed to maintain the biological growth within the media. These fans are mounted on the side wall of the FGR beneath the media and continually blow about 20,000 cfm of air into the bottom of each FGR. The air is then discharged from the top of the tank through the media. On the day of testing, all three FGRs were in service. The air sample was collected from the surface of FGR No. 3 (unit that is furthest north) using the flux chamber. The water distribution system was turned off for about 10 minutes while the sample was collected.							
AFT Effluent Channel	This sample was collected from AFT No. 3 which was the only one in service on the day of testing. The flux chamber was placed over the water surface in the effluent channel. These tanks receive effluent from the oxidation ponds and are used primarily for algae removal.							
Solids Dewatering Beds	This sample was collected from the bed that had the most moisture. On the day of testing five of the ten beds were filled with biosolids at varying stages of dryness. The flux chamber was placed on top of the biosolids while the sample was collected.							

The RSC/VOC Test results are summarized in Table 2 and the ALS reports are included in the Appendix.

		RS	C/VOC Concentr	ation (ppbV)						
Compound	MRL	Channel Monster Room Exhaust	Fixed Growth Reactor Exhaust	AFT Effluent Channel	Solids Dewatering Beds						
Reduced Sulfur Compounds											
Hydrogen Sulfide	5	1,200	ND	ND	10.0						
Methyl Mercaptan	5	30	ND	ND	ND						
Volatile Organic Comp	ounds										
Ethanol	27	220	29	ND	39						
n-Hexane	1.4	ND	1.6	3.5	ND						
Tetrahydrofuran (THF)	1.7	ND	ND	ND	2.8						
Ethyl Acetate	2.8	2.8	ND	ND	ND						
Chloroform	1.0	1.8	ND	ND	ND						
Trichloroethene	0.93	0.9	ND	ND	ND						
Toluene	1.3	8.7	10.0	11.0	8.9						
n-Butyl Acetate	1.1	1.3	2.0	ND	1.3						
Tetrachloroethene	0.74	1.5	2.1	2.5	1.6						
m,p-Xylenes	2.3	ND	3.0	ND	ND						
alpha-Pinene	0.9	1.1	1.6	1.9	1.4						
d-Limonene	0.9	4.5	5.1	3.6	4						

instrumentation.

The RSC results indicate there was 1.2 parts per million (ppm) of H_2S and 0.03 ppm of methyl mercaptan (MM) in the air being exhausted from the channel monster room. There was no H_2S or MM coming from the fixed growth reactors or the AFT tanks and only 0.010 ppm of H_2S coming from the solids dewatering beds.

The VOC results indicate the presence of several compounds from each of the sampled locations, but the concentrations were all quite low and unlikely to be significantly contributors to off-site odor emissions.

4.1.2 Odalog H₂S Results

Three Odalogs were installed to measure H_2S concentrations from September 9 through 22, 2013. These Odalogs were installed on the channel monster room exhaust at the influent pump station, in the primary influent channel and in the primary effluent channel

as shown on Figure 1. These locations were selected after a preliminary walk-through of the plant with a Jerome H_2S analyzer (accurate down to 3 parts per billion) revealed these locations to have the highest potential for H_2S formation and release. The Odalogs are capable of measuring H_2S down to 1 ppm and are ineffective on sources with H_2S concentrations less than 1 ppm. The three monitored locations were the only three that showed the potential for significant H_2S release. The fixed growth reactors, oxidation ponds, AFTs and other sources showed little or no H_2S when tested with the Jerome. After the Odalogs were retrieved, the data was downloaded and the figures were created to show H_2S concentrations throughout the monitoring period. The Odalogs were programmed to log a reading every 60 seconds throughout the period.

Figures 3, 4 and 5 are Odalog charts that show the H_2S concentrations throughout the monitoring period at the channel room exhaust, the primary influent channel, and the primary effluent channel sampling locations respectively. As shown in Figure 4, the channel monster room exhaust had an average H_2S concentration of 0.36 ppm and a peak of 2 ppm. Note, this odalog chart has a slightly different appearance than the other two Odalog charts because the Odalog that was used in this location had a higher range of measurement (0-1,000 ppm) and was only capable of logging H_2S concentrations in whole numbers (1.0 or 2.0, not 1.2).

The primary influent channel had an average H_2S concentration of 4.9 ppm and a peak of 49.8 ppm, as shown on Figure 5. This figure shows fairly routine spikes that occur at about 6:00 a.m. and again at about 6:00 p.m.

The primary effluent channel had an average H_2S concentration of 8 ppm and a peak of 35 ppm, as shown on Figure 6. The spikes in the effluent channel routinely occurred at about 8:00 a.m. and 8:00 p.m. The two hour difference from the influent channel can be attributed to the time it takes for the water to pass through the primaries.

4.2 Liquid Sampling Test Results

Liquid samples were collected from the following locations and tested for pH, ORP, total sulfides and temperature. These locations are shown on Figure 1 and were selected because they were the only locations that appeared to have the potential for sulfide generation.

- Primary influent.
- Primary effluent.
- Fixed growth reactor influent.
- Oxidation pond.
- AFT effluent.

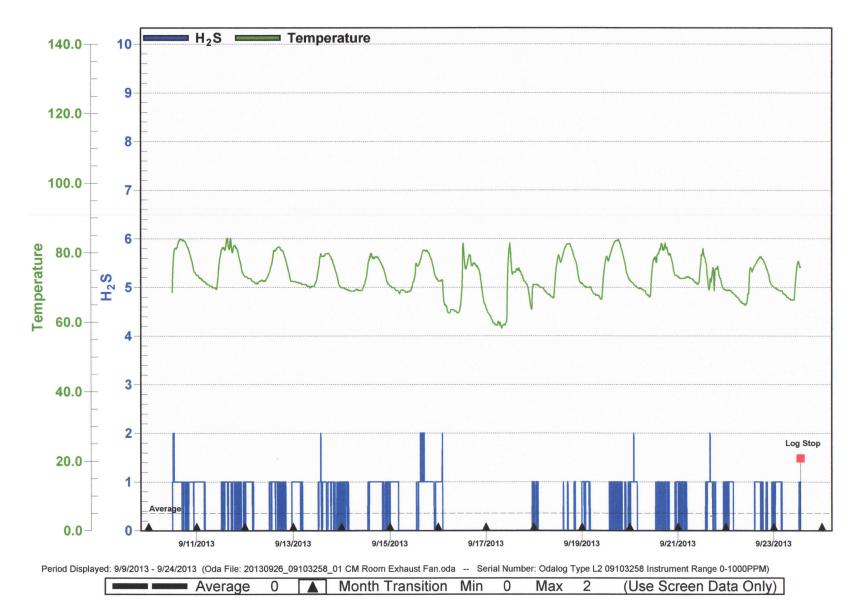


Figure 4 CM ROOM EXHAUST ODALOG CHART ODOR TESTING REPORT MASTER PLAN AND PRIMARY TREATMENT DESIGN CITY OF SUNNYVALE

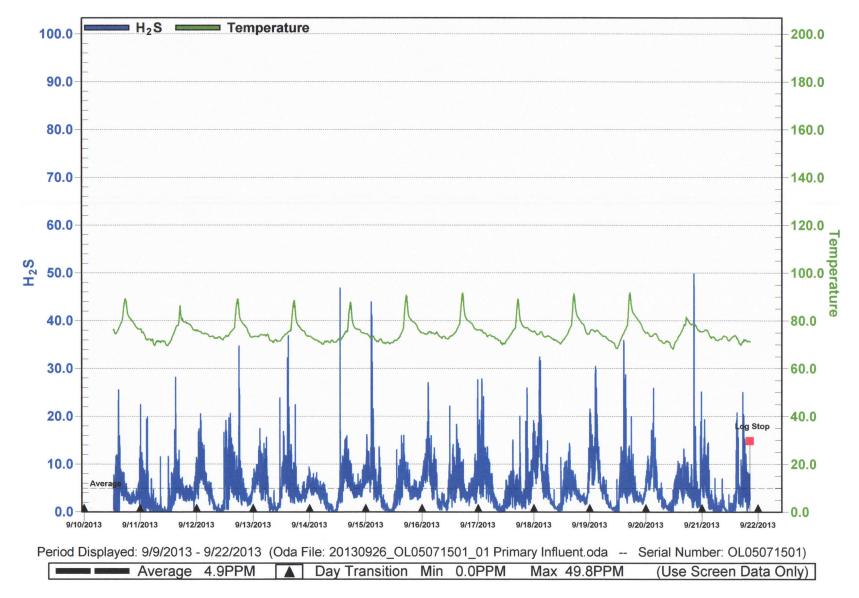


Figure 5 PRIMARY INFLUENT CHANNEL ODALOG CHART ODOR TESTING REPORT MASTER PLAN AND PRIMARY TREATMENT DESIGN CITY OF SUNNYVALE

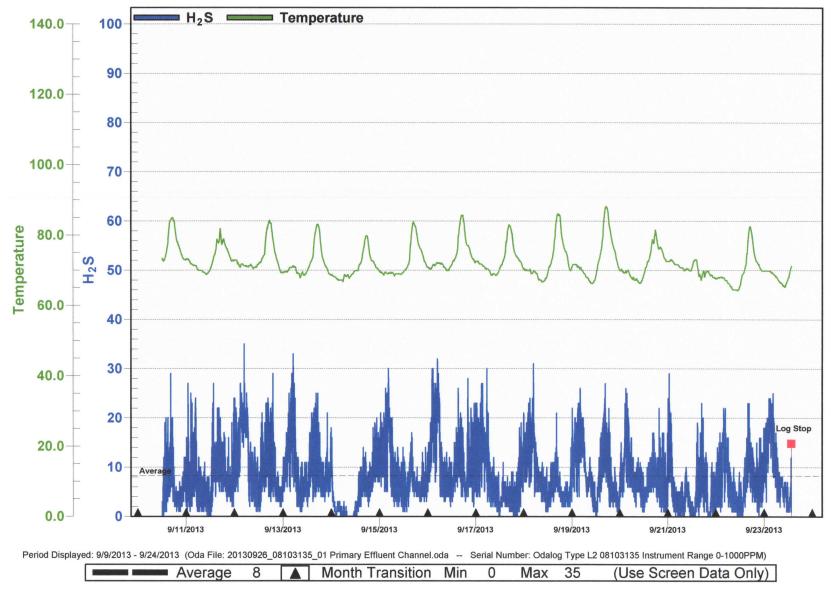


Figure 6 PRIMARY EFFLUENT CHANNEL ODALOG CHART ODOR TESTING REPORT MASTER PLAN AND PRIMARY TREATMENT DESIGN CITY OF SUNNYVALE The liquid sampling test results are shown on Table 3. The pH of the primary influent and effluent was consistently in the 7.4 to 7.8 range which is quite good and means that about 85 percent of the sulfides are in the form of HS- instead of H_2S as shown in Figure 3. The pH of the FGR influent and AFT effluent was greater than 8 indicating little opportunity for H_2S release from these sources.

The ORP of the primary influent and effluent ranged from -140 to -201 mV. Anaerobic bacteria are very efficient in this range and the potential to reduce sulfates to sulfides is certainly present. The H_2S measured using the Odalogs reflects this. The ORP of the FGR influent and AFT effluent was -50 and -45, respectively. In this range there would be little anaerobic bacteria activity.

The primary influent and effluent total sulfide concentrations ranged from 0.5 to 1.0 mg/L. While these concentrations are not considered high, they are certainly high enough to result in significant atmospheric H_2S . No total sulfides were measured in the FGR influent, AFT effluent or in the oxidation pond. These three sources have little potential for H_2S production and release.

5.0 OBSERVATIONS/DISCUSSION OF RESULTS

Based on a walk-through of the WPCP, raw wastewater odors were detected in the vicinity of the headworks facilities and primary clarifiers, but no odors were detected in any other area of the plant. The headworks and primary clarifier odors were not overpowering, but they were certainly noticeable and capable of being detected off-site depending on the wind direction.

Following this walk-through (and subjective analysis), the field testing that was performed corroborated the subjective odor analysis by showing that the headworks and primary facilities have relatively high H_2S concentrations and that the other downstream processes have almost no $H_2S/RSC/VOC$ or even the potential to create these compounds.

The RSC/VOC test results show that there are no unusual compounds in concentrations that would lead to significant odor emissions or affect the performance of odor control systems that could be installed as part of the plant improvements.

Significant reduced sulfur compounds are most commonly seen in biosolids handling processes. In this case, there seemed to be little, if any, gas escaping from the anaerobic digesters and the solids in the dewatering beds were emitting almost no RSC. Therefore, the current solids handling processes at the plant are very good from an odor perspective.

The test results indicate the FGRs and AFTs do not present a significant odor risk.

M	Table 3 Liquid Test Results Master Plan and Primary Treatment Design City of Sunnyvale															
	Septe	mber	10 (10:	15 am)	Sept	embe	r 10 (1:′	15 pm)	Septe	mber	11 (8:	10 am)	Septe	mber	11 (11:	45 am)
Location	Temp (°F)	рН	ORP (mv)	TS (mg/L)	Temp (°F)	рН	ORP (mv)	TS (mg/L)	Temp (°F)	рН	ORP (mv)	TS (mg/L)	Temp (°F)	рН	ORP (mv)	TS (mg/L)
Primary Influent	75			0.5	74	7.56	-169	0.7	75	7.81	-143	0.4	78	7.6	-201	1.0
Primary Effluent	74			0.5	78	7.41	-165	0.8	75	7.47	-140	0.5	78	7.6	-192	0.9
FGR Influent	70			0.0	76	9.04	-50	0.0								
AFT Effluent					75	8.11	-45	0.0								
Oxidation Pond	73			0.0												
Legend: Temp –	Tempera	ture, C	ORP – C	Dxidation	Reduction	on Pot	ential, T	S – Total	Sulfide	S						

<u>ъ</u>

The oxidation ponds cover about 440 acres and have a significant amount of settled solids. These ponds are always full and the solids are never exposed to the atmosphere since the water provides a odor containment cap. As long as the ponds remain full, there is little risk of significant odors being emitted from them except perhaps in the spring and fall when temperatures change and the ponds could potentially turnover. When this happens the water on the bottom (near the solids) comes to the top and odors could be released in the process. This is not uncommon in oxidation ponds, but was not occurring during September testing period. There was no apparent odor coming from the ponds but ponds could turn over at least twice per year and could off-gas for a short period at that time. The off-gassing would typically last no more than seven days.

New headworks facilities and primary sedimentation basins would be designed and constructed during the next phase of this project. Based on the field testing report, provisions for odor containment and treatment should be provided. The existing odors and relatively high H₂S concentrations in the vicinity of the headworks and primaries indicate off-site odor detection is not only possible, when the new facilities are constructed, but probable. The new processes would be similar to the current processes and there is no reason to believe the new facilities would have fewer emissions than the current facility. During preliminary design, a determination would be made as to the level of odor containment and control that would be provided based on the final layout configurations of the headworks and primary facilities.

New biosolids handling facilities are expected to be designed and constructed in the near future. The process configurations for these new facilities are currently under consideration, and would include new thickening and dewatering facilities and potentially more digesters. Based on experience at other facilities, the thickening and dewatering facilities handling would require some level of odor control depending on the processes, technologies and locations that are ultimately selected (this will be addressed as part of each specific process TM).

Technical Memorandum

APPENDIX - ALS ENVIRONMENTAL RSC/VOC REPORTS

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

LABORATORY REPORT

September 24, 2013

Bruce Koetter Webster Environmental Associates 13121 Eastpoint Park Blvd., Suite E Louisville, KY 40223

RE: Sunnyvale

Dear Bruce:

Enclosed are the results of the samples submitted to our laboratory on September 12, 2013. For your reference, these analyses have been assigned our service request number P1304046.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

anera KATEV

By Kate Aguilera at 7:54 am, Sep 26, 2013

Kate Aguilera Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

Client: Webster Environmental Associates Project: Sunnyvale Service Request No: P1304046

CASE NARRATIVE

The samples were received intact under chain of custody on September 12, 2013 and were stored in accordance with the analytical method requirements. The samples were received past the recommended holding time for the sulfur analysis. The analysis was performed as soon as possible after receipt by the laboratory. The data is flagged to indicate the holding time exceedance. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Sulfur Analysis

The samples were analyzed for twenty sulfur compounds per ASTM D 5504-08 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan. This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHA-LAP scope of accreditation.

Volatile Organic Compound Analysis

The samples were also analyzed for volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph/mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. According to the method, the use of Tedlar bags is considered a method modification. This method is not included on the laboratory's AIHA-LAP scope of accreditation. Any analytes flagged with an X are not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

The reporting limits have been elevated for sample DAF Effluent Weir (P1304046-003). The chromatogram indicated the presence of non-target background components. The sample was diluted in order to prevent damage to the instrument and to achieve optimal resolution of the target analytes.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 **T:** +1 805 526 7161 **F:** +1 805 526 7270 <u>www.alsglobal.com</u>

ALS Environmental - Simi Valley

Certifications, Accreditations, and Registrations

Agency	Web Site	Number
АІНА	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L11-203
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp- services/labcert/labcert.htm	2012039
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	581572
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	CA200007
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 13-4
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01627201 3-3
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client:	Webster Enviro	nmental A	ssociates		Service Request: P1304046
Project ID:	Sunnyvale				
Date Received: Time Received:	9/12/2013 10:00				A D5504-08 - Sulfur Bag 5 Modified - VOC Bags
			Date	Time	STM 0-15
Client Sample ID	Lab Code	Matrix	Collected	Collected	AST
Sludge Bed Surface	P1304046-001	Air	9/11/2013	09:00	X X
Fan on Roof of Primary	P1304046-002	Air	9/11/2013	09:20	X X
DAF Effluent Weir	P1304046-003	Air	9/11/2013	09:40	X X
Fixed Growth Reactor #3	P1304046-004	Air	9/11/2013	10:00	X X

Air - Chain of Custody Record & Analytical Service Request 2655 Park Center Drive, Suite A

Page _____ of _____

(ALS)	Simi Valley, Phone (805) Fax (805) 53		D65	Requested Turnard 1 Day (100%) 2 Day	ound Time in Busi (75%) 3 Day (50%)	nees Days (Sun 6) & Day (35%)	charges) please		dered a	ALS Pare	30404	7
					(1010) 0 Day (50)		3 Day (20%) 11	Dey-com	ALS Contac		10101	6
Company Name & Address (Reporting Webster Environ 13121 East point	Information)	~\		Project Name	1010				5			
12121 Eastpoint	PK Blu	d		Sunny Project Number	Julie				Analyst	s Method	-	
Louisville, K	Y 40	223		f			9		8		1	
Admisville, K Project Manager Bruck Koetter Phone	Fax			P.O. # / Billing Inform	nation					+	Görnmerste	,
502-419-5762									30		e.g. Actual Preservative	
Email Address for Result Reporting bruce. Koetta	Coda	cine	-	Sampler (Print & Sign)	the	Bruce	Keettur		S it		specific instruct	
Client Sample ID	Laboratory ID Number	Data Collected	Time Collected		Eaw Controller ID	Conistor Start Pressure "Hg	Cenister End Pressure "Hg/palg	Sample Volume	are d			
SIndge Bed Surface	\square	9/11/1	9:00					36	×		<u> </u>	-1
P												
Fon a Ront of Prime	,0	11	9:20					3L	¥			コ
DAF Effluent Wei	- 3	17	9:40					32	×			\neg
												-1
Fixed 6 rowth Reacture #3	- 9	97	10:00					32	×			
	<u> </u>											
					· · · · · · · · · · · · · · · · · · ·							
					· · · · · · · · · · · · · · · · · · ·							-
Report	Tiet Levels -	planse sale	đ								During the Description	
Tier I - Results (Default if not specified) Tier II (Results + QC Summariae)	Tier III (Re Tier IV (aulte + QC & C Data Validatio	alibration Sum n Package) 109		EOD required Yes Type:	i / No Units:		Chain of C INTACT	Custody Seal: BROKEN	ABSENT	Project Requirem (MRLs, QAPP)	34 1 62
Relinguished by: (Signature)			Date:	21.001	Received by: (Bigman	VKU	Dor		<u>MIN</u>	Time: 03		
			orallow.		Received by: (Signalu	ne)			Date:	Time:	Cooler / Blank	°C

p.1

11

Sep

ALS Environmental Sample Acceptance Check Form

Client	: Webster Envir	onmental Associates	T		0	Work order:	P1304046			_
	t: Sunnyvale									
	e(s) received on:				Date opened:		by:	MZAN		
		samples received by ALS.		-	-	-			dication	of
compliance	e or nonconformity.	Thermal preservation and	pH will only be e	valuated either at t	he request of the	e client and/or as requ	ired by the metho	d/SOP. <u>Yes</u>	<u>No</u>	N/A
1	Were sample (containers properly m	oarked with cli	ient sample ID'	7			$\overline{\mathbf{X}}$		
2	_	upplied by ALS?		ent sumple no	•					
3		ontainers arrive in goo	od condition?					X		
4	Were chain-of	f-custody papers used	and filled out	?				X		
5		ontainer labels and/or			ers?			X		
6	-	olume received adequ	• •	• • •				X		
7	Are samples w	vithin specified holding	g times?						X	
8	Was proper te	mperature (thermal p	reservation) o	f cooler at rece	pipt adhered to	o?				X
9	Was a trip bla	nk received?							X	
10	Were custody	seals on outside of co	oler/Box?						X	
		Location of seal(s)?					Sealing Lid?			X
	•	e and date included?								X
	Were seals inta	act?								X
	Were custody	seals on outside of sar	nple container	:?					X	
		Location of seal(s)?					Sealing Lid?			X
	•	e and date included?								X
	Were seals inta									X
11		rs have appropriate pr		•		Client specified i	nformation?			X
		nt indication that the s	-		served?					X
	Were VOA v i	ials checked for present	nce/absence of	f air bubbles?						X
	Does the client	t/method/SOP require	that the analy	st check the same	mple pH and	if necessary alter	it?			X
12	Tubes:	Are the tubes capp	oed and intact?	?						X
		Do they contain m	noisture?							X
13	Badges:	Are the badges pr	operly capped	and intact?						X
		Are dual bed badg	ges separated a	and individually	y capped and	intact?				X
Lab	o Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receij	ot / Pres	ervation	1

Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	-
P1304046-001.01	3 L Zefon Bag					
P1304046-002.01	3 L Zefon Bag					
P1304046-003.01	3 L Zefon Bag					
P1304046-004.01	3 L Zefon Bag					

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Webster Environmental Associates
Client Sample ID:	Sludge Bed Surface
Client Project ID:	Sunnyvale

Test Code:	ASTM D 5504-08
Instrument ID:	Agilent 6890A/GC13/SCD
Analyst:	Mike Conejo
Sample Type:	3 L Zefon Bag
Test Notes:	Н3

ALS Project ID: P1304046 ALS Sample ID: P1304046-001

Date Collected:	9/11/13
Time Collected:	09:00
Date Received:	9/12/13
Date Analyzed:	9/12/13
Time Analyzed:	12:30
Volume(s) Analyzed:	1.0 ml(s)

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
7783-06-4	Hydrogen Sulfide	<u>µg/II</u> 14	7.0	<u> </u>	5.0	Quanner
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Webster Environmental Associates
Client Sample ID:	Fan on Roof of Primary
Client Project ID:	Sunnyvale

Test Code:	ASTM D 5504-08
Instrument ID:	Agilent 6890A/GC13/SCD
Analyst:	Mike Conejo
Sample Type:	3 L Zefon Bag
Test Notes:	Н3

ALS Project ID: P1304046 ALS Sample ID: P1304046-002

Date Collected:	9/11/13
Time Collected:	09:20
Date Received:	9/12/13
Date Analyzed:	9/12/13
Time Analyzed:	12:47
Volume(s) Analyzed:	1.0 ml(s)

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
7783-06-4	Hydrogen Sulfide	<u> </u>	7.0	1,200	5.0	Quanner
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	58	9.8	30	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Webster Environmental Associates
Client Sample ID:	DAF Effluent Weir
Client Project ID:	Sunnyvale

Test Code:	ASTM D 5504-08
Instrument ID:	Agilent 6890A/GC13/SCD
Analyst:	Mike Conejo
Sample Type:	3 L Zefon Bag
Test Notes:	НЗ

ALS Project ID: P1304046 ALS Sample ID: P1304046-003

Date Collected:	9/11/13
Time Collected:	09:40
Date Received:	9/12/13
Date Analyzed:	9/12/13
Time Analyzed:	13:02
Volume(s) Analyzed:	1.0 ml(s)

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Webster Environmental Associates
Client Sample ID:	Fixed Growth Reactor #3
Client Project ID:	Sunnyvale

Test Code:	ASTM D 5504-08
Instrument ID:	Agilent 6890A/GC13/SCD
Analyst:	Mike Conejo
Sample Type:	3 L Zefon Bag
Test Notes:	Н3

ALS Project ID: P1304046 ALS Sample ID: P1304046-004

Date Collected:	9/11/13
Time Collected:	10:00
Date Received:	9/12/13
Date Analyzed:	9/12/13
Time Analyzed:	13:23
Volume(s) Analyzed:	1.0 ml(s)

CAS #	Compound	Result	MRL	Result	MRL	Data Qualifier
7783-06-4	Hydrogen Sulfide	μg/m ³ ND	μg/m ³ 7.0	ppbV ND	ppbV 5.0	Quanner
					5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND		
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Webster Environmental Associates
Client Sample ID:	Method Blank
Client Project ID:	Sunnyvale

Test Code:	ASTM D 5504-08
Instrument ID:	Agilent 6890A/GC13/SCD
Analyst:	Mike Conejo
Sample Type:	3 L Zefon Bag
Test Notes:	

ALS Project ID: P1304046 ALS Sample ID: P130912-MB

Date Collected: NA Time Collected: NA Date Received: NA Date Analyzed: 9/12/13 Time Analyzed: 08:14 Volume(s) Analyzed: 1.0 ml(s)

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	Webster Environmental Associates
Client Sample ID:	Lab Control Sample
Client Project ID:	Sunnyvale

ALS Project ID: P1304046 ALS Sample ID: P130912-LCS

Test Code:	ASTM D 5504-08	Date Collected: NA	
Instrument ID:	Agilent 6890A/GC13/SCD	Date Received: NA	
Analyst:	Mike Conejo	Date Analyzed: 9/12/13	
Sample Type:	3 L Zefon Bag	Volume(s) Analyzed: NA ml(s)	
Test Notes:			

CAS #	Compound	Spike Amount	Result	% Recovery	ALS Acceptance	Data
	•	ppbV	ppbV	·	Limits	Qualifier
7783-06-4	Hydrogen Sulfide	2,050	2,150	105	63-140	
463-58-1	Carbonyl Sulfide	2,020	2,200	109	63-138	
74-93-1	Methyl Mercaptan	1,890	2,240	119	63-144	

RESULTS OF ANALYSIS

Page 1 of 3

Client: Client Sample ID: Client Project ID:	Webster Environmental Associates Sludge Bed Surface Sunnyvale	ALS Project ID: P1304046 ALS Sample ID: P1304046-001	
Test Code:	EPA TO-15 Modified	Date Collected: 9/11/13	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	N/Agilent 5973inert/6890N/MS8 Date Received: 9/12/13	
Analyst:	Analyst: Lusine Hakobyan Da		
Sample Type: Test Notes:	3 L Zefon Bag	Volume(s) Analyzed: 0.10 Liter(s)	

CAS #	Compound	Result	MRL	Result	MRL	Data
115.05.1	D	μg/m ³	μg/m ³	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	5.0	ND	2.9	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	5.0	ND	1.0	
74-87-3	Chloromethane	ND	5.0	ND	2.4	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	5.0	ND	0.72	
75-01-4	Vinyl Chloride	ND	5.0	ND	2.0	
106-99-0	1,3-Butadiene	ND	5.0	ND	2.3	
74-83-9	Bromomethane	ND	5.0	ND	1.3	
75-00-3	Chloroethane	ND	5.0	ND	1.9	
64-17-5	Ethanol	73	50	39	27	
75-05-8	Acetonitrile	ND	5.0	ND	3.0	
107-02-8	Acrolein	ND	20	ND	8.7	
67-64-1	Acetone	ND	50	ND	21	
75-69-4	Trichlorofluoromethane	ND	5.0	ND	0.89	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	50	ND	20	
107-13-1	Acrylonitrile	ND	5.0	ND	2.3	
75-35-4	1,1-Dichloroethene	ND	5.0	ND	1.3	
75-09-2	Methylene Chloride	ND	5.0	ND	1.4	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	5.0	ND	1.6	
76-13-1	Trichlorotrifluoroethane	ND	5.0	ND	0.65	
75-15-0	Carbon Disulfide	ND	50	ND	16	
156-60-5	trans-1,2-Dichloroethene	ND	5.0	ND	1.3	
75-34-3	1,1-Dichloroethane	ND	5.0	ND	1.2	
1634-04-4	Methyl tert-Butyl Ether	ND	5.0	ND	1.4	
108-05-4	Vinyl Acetate	ND	50	ND	14	
78-93-3	2-Butanone (MEK)	ND	50	ND	17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:	Webster Environmental Associates						
Client Sample ID:	Sludge Bed Surface	ALS Project ID: P1304046					
Client Project ID:	Sunnyvale	ALS Sample ID: P1304046-001					
Test Code:	EPA TO-15 Modified	Date Collected: 9/11/13	ected: 9/11/13				
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: 9/12/13	Date Received: 9/12/13				
Analyst:	Lusine Hakobyan	Date Analyzed: 9/12/13					
Sample Type:	3 L Zefon Bag	Volume(s) Analyzed: 0.10 Liter(s	5)				
Test Notes:							

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	5.0	ND	1.3	
141-78-6	Ethyl Acetate	ND	10	ND	2.8	
110-54-3	n-Hexane	ND	5.0	ND	1.4	
67-66-3	Chloroform	ND	5.0	ND	1.0	
109-99-9	Tetrahydrofuran (THF)	8.4	5.0	2.8	1.7	
107-06-2	1,2-Dichloroethane	ND	5.0	ND	1.2	
71-55-6	1,1,1-Trichloroethane	ND	5.0	ND	0.92	
71-43-2	Benzene	ND	5.0	ND	1.6	
56-23-5	Carbon Tetrachloride	ND	5.0	ND	0.80	
110-82-7	Cyclohexane	ND	10	ND	2.9	
78-87-5	1,2-Dichloropropane	ND	5.0	ND	1.1	
75-27-4	Bromodichloromethane	ND	5.0	ND	0.75	
79-01-6	Trichloroethene	ND	5.0	ND	0.93	
123-91-1	1,4-Dioxane	ND	5.0	ND	1.4	
80-62-6	Methyl Methacrylate	ND	10	ND	2.4	
142-82-5	n-Heptane	ND	5.0	ND	1.2	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	ND	1.1	
108-10-1	4-Methyl-2-pentanone	ND	5.0	ND	1.2	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	ND	1.1	
79-00-5	1,1,2-Trichloroethane	ND	5.0	ND	0.92	
108-88-3	Toluene	33	5.0	8.9	1.3	
591-78-6	2-Hexanone	ND	5.0	ND	1.2	
124-48-1	Dibromochloromethane	ND	5.0	ND	0.59	
106-93-4	1,2-Dibromoethane	ND	5.0	ND	0.65	
123-86-4	n-Butyl Acetate	6.2	5.0	1.3	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client: Webster Environmental Associates ALS Project ID: P1304046 Client Sample ID: Sludge Bed Surface ALS Sample ID: P1304046-001 **Client Project ID:** Sunnyvale Test Code: Date Collected: 9/11/13 EPA TO-15 Modified Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 9/12/13 Analyst: Lusine Hakobyan Date Analyzed: 9/12/13 Sample Type: 3 L Zefon Bag Volume(s) Analyzed: 0.10 Liter(s)

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	5.0	ND	1.1	
127-18-4	Tetrachloroethene	11	5.0	1.6	0.74	
108-90-7	Chlorobenzene	ND	5.0	ND	1.1	
100-41-4	Ethylbenzene	ND	5.0	ND	1.2	
179601-23-1	m,p-Xylenes	ND	10	ND	2.3	
75-25-2	Bromoform	ND	5.0	ND	0.48	
100-42-5	Styrene	ND	5.0	ND	1.2	
95-47-6	o-Xylene	ND	5.0	ND	1.2	
111-84-2	n-Nonane	ND	5.0	ND	0.95	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	ND	0.73	
98-82-8	Cumene	ND	5.0	ND	1.0	
80-56-8	alpha-Pinene	7.9	5.0	1.4	0.90	
103-65-1	n-Propylbenzene	ND	5.0	ND	1.0	
622-96-8	4-Ethyltoluene	ND	5.0	ND	1.0	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ND	1.0	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ND	1.0	
100-44-7	Benzyl Chloride	ND	5.0	ND	0.97	
541-73-1	1,3-Dichlorobenzene	ND	5.0	ND	0.83	
106-46-7	1,4-Dichlorobenzene	ND	5.0	ND	0.83	
95-50-1	1,2-Dichlorobenzene	ND	5.0	ND	0.83	
5989-27-5	d-Limonene	23	5.0	4.2	0.90	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ND	0.52	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ND	0.67	
91-20-3	Naphthalene	ND	5.0	ND	0.95	
87-68-3	Hexachlorobutadiene	ND	5.0	ND	0.47	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Test Notes:

RESULTS OF ANALYSIS

Page 1 of 3

Client: Client Sample ID: Client Project ID:	Webster Environmental Associates Fan on Roof of Primary Sunnyvale	ALS Project ID: P1304046 ALS Sample ID: P1304046-002
Test Code:	EPA TO-15 Modified	Date Collected: 9/11/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: 9/12/13
Analyst:	Lusine Hakobyan	Date Analyzed: 9/12/13
Sample Type:	3 L Zefon Bag	Volume(s) Analyzed: 0.10 Liter(s)
Test Notes:		

CAS #	Compound	Result µg/m ³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	5.0	ND	2.9	2
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	5.0	ND	1.0	
74-87-3	Chloromethane	ND	5.0	ND	2.4	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	5.0	ND	0.72	
75-01-4	Vinyl Chloride	ND	5.0	ND	2.0	
106-99-0	1,3-Butadiene	ND	5.0	ND	2.3	
74-83-9	Bromomethane	ND	5.0	ND	1.3	
75-00-3	Chloroethane	ND	5.0	ND	1.9	
64-17-5	Ethanol	410	50	220	27	
75-05-8	Acetonitrile	ND	5.0	ND	3.0	
107-02-8	Acrolein	ND	20	ND	8.7	
67-64-1	Acetone	ND	50	ND	21	
75-69-4	Trichlorofluoromethane	ND	5.0	ND	0.89	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	50	ND	20	
107-13-1	Acrylonitrile	ND	5.0	ND	2.3	
75-35-4	1,1-Dichloroethene	ND	5.0	ND	1.3	
75-09-2	Methylene Chloride	ND	5.0	ND	1.4	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	5.0	ND	1.6	
76-13-1	Trichlorotrifluoroethane	ND	5.0	ND	0.65	
75-15-0	Carbon Disulfide	ND	50	ND	16	
156-60-5	trans-1,2-Dichloroethene	ND	5.0	ND	1.3	
75-34-3	1,1-Dichloroethane	ND	5.0	ND	1.2	
1634-04-4	Methyl tert-Butyl Ether	ND	5.0	ND	1.4	
108-05-4	Vinyl Acetate	ND	50	ND	14	
78-93-3	2-Butanone (MEK)	ND	50	ND	17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID: Client Project ID:	Webster Environmental Associates Fan on Roof of Primary Sunnyvale	ALS Project ID: P1304046 ALS Sample ID: P1304046-002	
Test Code:	EPA TO-15 Modified	Date Collected: 9/11/13	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: 9/12/13	
Analyst:	Lusine Hakobyan	Date Analyzed: 9/12/13	
Sample Type: Test Notes:	3 L Zefon Bag	Volume(s) Analyzed: 0.10 Liter(s))

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	µg∕m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	5.0	ND	1.3	
141-78-6	Ethyl Acetate	10	10	2.8	2.8	
110-54-3	n-Hexane	ND	5.0	ND	1.4	
67-66-3	Chloroform	8.9	5.0	1.8	1.0	
109-99-9	Tetrahydrofuran (THF)	ND	5.0	ND	1.7	
107-06-2	1,2-Dichloroethane	ND	5.0	ND	1.2	
71-55-6	1,1,1-Trichloroethane	ND	5.0	ND	0.92	
71-43-2	Benzene	ND	5.0	ND	1.6	
56-23-5	Carbon Tetrachloride	ND	5.0	ND	0.80	
110-82-7	Cyclohexane	ND	10	ND	2.9	
78-87-5	1,2-Dichloropropane	ND	5.0	ND	1.1	
75-27-4	Bromodichloromethane	ND	5.0	ND	0.75	
79-01-6	Trichloroethene	5.0	5.0	0.93	0.93	
123-91-1	1,4-Dioxane	ND	5.0	ND	1.4	
80-62-6	Methyl Methacrylate	ND	10	ND	2.4	
142-82-5	n-Heptane	ND	5.0	ND	1.2	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	ND	1.1	
108-10-1	4-Methyl-2-pentanone	ND	5.0	ND	1.2	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	ND	1.1	
79-00-5	1,1,2-Trichloroethane	ND	5.0	ND	0.92	
108-88-3	Toluene	33	5.0	8.7	1.3	
591-78-6	2-Hexanone	ND	5.0	ND	1.2	
124-48-1	Dibromochloromethane	ND	5.0	ND	0.59	
106-93-4	1,2-Dibromoethane	ND	5.0	ND	0.65	
123-86-4	n-Butyl Acetate	6.2	5.0	1.3	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client: Webster Environmental Associates ALS Project ID: P1304046 Client Sample ID: Fan on Roof of Primary ALS Sample ID: P1304046-002 **Client Project ID:** Sunnyvale Test Code: EPA TO-15 Modified Date Collected: 9/11/13 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 9/12/13 Analyst: Lusine Hakobyan Date Analyzed: 9/12/13 Sample Type: 3 L Zefon Bag Volume(s) Analyzed: 0.10 Liter(s) Test Notes:

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m ³	μg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	5.0	ND	1.1	
127-18-4	Tetrachloroethene	10	5.0	1.5	0.74	
108-90-7	Chlorobenzene	ND	5.0	ND	1.1	
100-41-4	Ethylbenzene	ND	5.0	ND	1.2	
179601-23-1	m,p-Xylenes	ND	10	ND	2.3	
75-25-2	Bromoform	ND	5.0	ND	0.48	
100-42-5	Styrene	ND	5.0	ND	1.2	
95-47-6	o-Xylene	ND	5.0	ND	1.2	
111-84-2	n-Nonane	ND	5.0	ND	0.95	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	ND	0.73	
98-82-8	Cumene	ND	5.0	ND	1.0	
80-56-8	alpha-Pinene	6.3	5.0	1.1	0.90	
103-65-1	n-Propylbenzene	ND	5.0	ND	1.0	
622-96-8	4-Ethyltoluene	ND	5.0	ND	1.0	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ND	1.0	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ND	1.0	
100-44-7	Benzyl Chloride	ND	5.0	ND	0.97	
541-73-1	1,3-Dichlorobenzene	ND	5.0	ND	0.83	
106-46-7	1,4-Dichlorobenzene	ND	5.0	ND	0.83	
95-50-1	1,2-Dichlorobenzene	ND	5.0	ND	0.83	
5989-27-5	d-Limonene	25	5.0	4.5	0.90	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ND	0.52	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ND	0.67	
91-20-3	Naphthalene	ND	5.0	ND	0.95	
87-68-3	Hexachlorobutadiene	ND	5.0	ND	0.47	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Webster Environmental Associates		
Client Sample ID:	DAF Effluent Weir	ALS Project ID: P	1304046
Client Project ID:	Sunnyvale	ALS Sample ID: P	1304046-003
Test Code:	EPA TO-15 Modified	Date Collected: 9/	/11/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: 9/	/12/13
Analyst:	Lusine Hakobyan	Date Analyzed: 9/	/12/13
Sample Type:	3 L Zefon Bag	Volume(s) Analyzed:	0.050 Liter(s)
Test Notes:			

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	μg/m ⁻ ND	<u>μg/m-</u> 10	ND	5.8	Quaimer
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	10	ND	2.0	
74-87-3	Chloromethane	ND	10	ND	4.8	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	10	ND	1.4	
75-01-4	Vinyl Chloride	ND	10	ND	3.9	
106-99-0	1,3-Butadiene	ND	10	ND	4.5	
74-83-9	Bromomethane	ND	10	ND	2.6	
75-00-3	Chloroethane	ND	10	ND	3.8	
64-17-5	Ethanol	ND	100	ND	53	
75-05-8	Acetonitrile	ND	10	ND	6.0	
107-02-8	Acrolein	ND	40	ND	17	
67-64-1	Acetone	ND	100	ND	42	
75-69-4	Trichlorofluoromethane	ND	10	ND	1.8	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	100	ND	41	
107-13-1	Acrylonitrile	ND	10	ND	4.6	
75-35-4	1,1-Dichloroethene	ND	10	ND	2.5	
75-09-2	Methylene Chloride	ND	10	ND	2.9	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	10	ND	3.2	
76-13-1	Trichlorotrifluoroethane	ND	10	ND	1.3	
75-15-0	Carbon Disulfide	ND	100	ND	32	
156-60-5	trans-1,2-Dichloroethene	ND	10	ND	2.5	
75-34-3	1,1-Dichloroethane	ND	10	ND	2.5	
1634-04-4	Methyl tert-Butyl Ether	ND	10	ND	2.8	
108-05-4	Vinyl Acetate	ND	100	ND	28	
78-93-3	2-Butanone (MEK)	ND	100	ND	34	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 3

Client: Webster Environmental Associates Client Sample ID: DAF Effluent Weir ALS Project ID: P1304046 **Client Project ID:** Sunnyvale ALS Sample ID: P1304046-003 Test Code: Date Collected: 9/11/13 EPA TO-15 Modified Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 9/12/13 Analyst: Lusine Hakobyan Date Analyzed: 9/12/13 Sample Type: 3 L Zefon Bag Volume(s) Analyzed: 0.050 Liter(s)

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	10	ND	2.5	
141-78-6	Ethyl Acetate	ND	20	ND	5.6	
110-54-3	n-Hexane	12	10	3.5	2.8	
67-66-3	Chloroform	ND	10	ND	2.0	
109-99-9	Tetrahydrofuran (THF)	ND	10	ND	3.4	
107-06-2	1,2-Dichloroethane	ND	10	ND	2.5	
71-55-6	1,1,1-Trichloroethane	ND	10	ND	1.8	
71-43-2	Benzene	ND	10	ND	3.1	
56-23-5	Carbon Tetrachloride	ND	10	ND	1.6	
110-82-7	Cyclohexane	ND	20	ND	5.8	
78-87-5	1,2-Dichloropropane	ND	10	ND	2.2	
75-27-4	Bromodichloromethane	ND	10	ND	1.5	
79-01-6	Trichloroethene	ND	10	ND	1.9	
123-91-1	1,4-Dioxane	ND	10	ND	2.8	
80-62-6	Methyl Methacrylate	ND	20	ND	4.9	
142-82-5	n-Heptane	ND	10	ND	2.4	
10061-01-5	cis-1,3-Dichloropropene	ND	10	ND	2.2	
108-10-1	4-Methyl-2-pentanone	ND	10	ND	2.4	
10061-02-6	trans-1,3-Dichloropropene	ND	10	ND	2.2	
79-00-5	1,1,2-Trichloroethane	ND	10	ND	1.8	
108-88-3	Toluene	43	10	11	2.7	
591-78-6	2-Hexanone	ND	10	ND	2.4	
124-48-1	Dibromochloromethane	ND	10	ND	1.2	
106-93-4	1,2-Dibromoethane	ND	10	ND	1.3	
123-86-4	n-Butyl Acetate	ND	10	ND	2.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Test Notes:

RESULTS OF ANALYSIS

Page 3 of 3

Client: Webster Environmental Associates ALS Project ID: P1304046 Client Sample ID: DAF Effluent Weir ALS Sample ID: P1304046-003 Client Project ID: Sunnyvale Deta Callected: 0/11/12

Test Code:	EPA TO-15 Modified	Date Collected: 9/	/11/13	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: 9/12/13		
Analyst:	Lusine Hakobyan	Date Analyzed: 9/	/12/13	
Sample Type:	3 L Zefon Bag	Volume(s) Analyzed:	0.050 Liter(s)	
Test Notes:				

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
111-65-9	n-Octane	ND	10	ND	2.1	
127-18-4	Tetrachloroethene	17	10	2.5	1.5	
108-90-7	Chlorobenzene	ND	10	ND	2.2	
100-41-4	Ethylbenzene	ND	10	ND	2.3	
179601-23-1	m,p-Xylenes	ND	20	ND	4.6	
75-25-2	Bromoform	ND	10	ND	0.97	
100-42-5	Styrene	ND	10	ND	2.3	
95-47-6	o-Xylene	ND	10	ND	2.3	
111-84-2	n-Nonane	ND	10	ND	1.9	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	ND	1.5	
98-82-8	Cumene	ND	10	ND	2.0	
80-56-8	alpha-Pinene	11	10	1.9	1.8	
103-65-1	n-Propylbenzene	ND	10	ND	2.0	
622-96-8	4-Ethyltoluene	ND	10	ND	2.0	
108-67-8	1,3,5-Trimethylbenzene	ND	10	ND	2.0	
95-63-6	1,2,4-Trimethylbenzene	ND	10	ND	2.0	
100-44-7	Benzyl Chloride	ND	10	ND	1.9	
541-73-1	1,3-Dichlorobenzene	ND	10	ND	1.7	
106-46-7	1,4-Dichlorobenzene	ND	10	ND	1.7	
95-50-1	1,2-Dichlorobenzene	ND	10	ND	1.7	
5989-27-5	d-Limonene	20	10	3.6	1.8	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	ND	1.0	
120-82-1	1,2,4-Trichlorobenzene	ND	10	ND	1.3	
91-20-3	Naphthalene	ND	10	ND	1.9	
87-68-3	Hexachlorobutadiene	ND	10	ND	0.94	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client: Client Sample ID: Client Project ID:	Webster Environmental Associates Fixed Growth Reactor #3 Sunnyvale	ALS Project ID: P1304046 ALS Sample ID: P1304046-004
Test Code:	EPA TO-15 Modified	Date Collected: 9/11/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: 9/12/13
Analyst:	Lusine Hakobyan	Date Analyzed: 9/12/13
Sample Type:	3 L Zefon Bag	Volume(s) Analyzed: 0.10 Liter(s)
Test Notes:		

CAS #	Compound	Result	MRL	Result	MRL	Data
115-07-1	Dronana	μg/m ³ ND	μg/m ³ 5.0	ppbV ND	ppbV 2.9	Qualifier
75-71-8	Propene Dichlorodifluoromethane (CFC 12)	ND	5.0	ND	2.9 1.0	
74-87-3	Chloromethane	ND	5.0	ND	2.4	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	5.0	ND	0.72	
75-01-4	Vinyl Chloride	ND	5.0	ND	2.0	
106-99-0	1,3-Butadiene	ND	5.0	ND	2.3	
74-83-9	Bromomethane	ND	5.0	ND	1.3	
75-00-3	Chloroethane	ND	5.0	ND	1.9	
64-17-5	Ethanol	55	50	29	27	
75-05-8	Acetonitrile	ND	5.0	ND	3.0	
107-02-8	Acrolein	ND	20	ND	8.7	
67-64-1	Acetone	ND	50	ND	21	
75-69-4	Trichlorofluoromethane	ND	5.0	ND	0.89	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	50	ND	20	
107-13-1	Acrylonitrile	ND	5.0	ND	2.3	
75-35-4	1,1-Dichloroethene	ND	5.0	ND	1.3	
75-09-2	Methylene Chloride	ND	5.0	ND	1.4	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	5.0	ND	1.6	
76-13-1	Trichlorotrifluoroethane	ND	5.0	ND	0.65	
75-15-0	Carbon Disulfide	ND	50	ND	16	
156-60-5	trans-1,2-Dichloroethene	ND	5.0	ND	1.3	
75-34-3	1,1-Dichloroethane	ND	5.0	ND	1.2	
1634-04-4	Methyl tert-Butyl Ether	ND	5.0	ND	1.4	
108-05-4	Vinyl Acetate	ND	50	ND	14	
78-93-3	2-Butanone (MEK)	ND	50	ND	17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 3

Client: Webster Environmental Associates Client Sample ID: Fixed Growth Reactor #3 ALS Project ID: P1304046 **Client Project ID:** Sunnyvale ALS Sample ID: P1304046-004 Test Code: Date Collected: 9/11/13 EPA TO-15 Modified Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 9/12/13 Analyst: Lusine Hakobyan Date Analyzed: 9/12/13 Sample Type: 3 L Zefon Bag Volume(s) Analyzed: 0.10 Liter(s) Test Notes:

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg∕m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	5.0	ND	1.3	
141-78-6	Ethyl Acetate	ND	10	ND	2.8	
110-54-3	n-Hexane	5.6	5.0	1.6	1.4	
67-66-3	Chloroform	ND	5.0	ND	1.0	
109-99-9	Tetrahydrofuran (THF)	ND	5.0	ND	1.7	
107-06-2	1,2-Dichloroethane	ND	5.0	ND	1.2	
71-55-6	1,1,1-Trichloroethane	ND	5.0	ND	0.92	
71-43-2	Benzene	ND	5.0	ND	1.6	
56-23-5	Carbon Tetrachloride	ND	5.0	ND	0.80	
110-82-7	Cyclohexane	ND	10	ND	2.9	
78-87-5	1,2-Dichloropropane	ND	5.0	ND	1.1	
75-27-4	Bromodichloromethane	ND	5.0	ND	0.75	
79-01-6	Trichloroethene	ND	5.0	ND	0.93	
123-91-1	1,4-Dioxane	ND	5.0	ND	1.4	
80-62-6	Methyl Methacrylate	ND	10	ND	2.4	
142-82-5	n-Heptane	ND	5.0	ND	1.2	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	ND	1.1	
108-10-1	4-Methyl-2-pentanone	ND	5.0	ND	1.2	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	ND	1.1	
79-00-5	1,1,2-Trichloroethane	ND	5.0	ND	0.92	
108-88-3	Toluene	38	5.0	10	1.3	
591-78-6	2-Hexanone	ND	5.0	ND	1.2	
124-48-1	Dibromochloromethane	ND	5.0	ND	0.59	
106-93-4	1,2-Dibromoethane	ND	5.0	ND	0.65	
123-86-4	n-Butyl Acetate	9.6	5.0	2.0	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client: Webster Environmental Associates ALS Project ID: P1304046 Client Sample ID: Fixed Growth Reactor #3 ALS Sample ID: P1304046-004 **Client Project ID:** Sunnyvale Test Code: Date Collected: 9/11/13 EPA TO-15 Modified Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 9/12/13 Analyst: Lusine Hakobyan Date Analyzed: 9/12/13 Sample Type: 3 L Zefon Bag Volume(s) Analyzed: 0.10 Liter(s) Test Notes:

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m ³	µg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	5.0	ND	1.1	
127-18-4	Tetrachloroethene	14	5.0	2.1	0.74	
108-90-7	Chlorobenzene	ND	5.0	ND	1.1	
100-41-4	Ethylbenzene	ND	5.0	ND	1.2	
179601-23-1	m,p-Xylenes	13	10	3.0	2.3	
75-25-2	Bromoform	ND	5.0	ND	0.48	
100-42-5	Styrene	ND	5.0	ND	1.2	
95-47-6	o-Xylene	ND	5.0	ND	1.2	
111-84-2	n-Nonane	ND	5.0	ND	0.95	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	ND	0.73	
98-82-8	Cumene	ND	5.0	ND	1.0	
80-56-8	alpha-Pinene	9.1	5.0	1.6	0.90	
103-65-1	n-Propylbenzene	ND	5.0	ND	1.0	
622-96-8	4-Ethyltoluene	ND	5.0	ND	1.0	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ND	1.0	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ND	1.0	
100-44-7	Benzyl Chloride	ND	5.0	ND	0.97	
541-73-1	1,3-Dichlorobenzene	ND	5.0	ND	0.83	
106-46-7	1,4-Dichlorobenzene	ND	5.0	ND	0.83	
95-50-1	1,2-Dichlorobenzene	ND	5.0	ND	0.83	
5989-27-5	d-Limonene	29	5.0	5.1	0.90	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ND	0.52	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ND	0.67	
91-20-3	Naphthalene	ND	5.0	ND	0.95	
87-68-3	Hexachlorobutadiene	ND	5.0	ND	0.47	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 3

ALS Project ID: P1304046 ALS Sample ID: P130912-MB

Client:	Webster Environmental Associates
Client Sample ID:	Method Blank
Client Project ID:	Sunnyvale

Test Code:	EPA TO-15 Modified	Date Collected: N	A
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: N	A
Analyst:	Lusine Hakobyan	Date Analyzed: 9/	12/13
Sample Type:	3 L Zefon Bag	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.50	ND	0.20	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	2.0	ND	0.87	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	5.0	ND	2.0	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	5.0	ND	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 3

ALS Project ID: P1304046 ALS Sample ID: P130912-MB

Client:	Webster Environmental Associates
Client Sample ID:	Method Blank
Client Project ID:	Sunnyvale

Test Code:	EPA TO-15 Modified	Date Collected: NA	A
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: NA	A
Analyst:	Lusine Hakobyan	Date Analyzed: 9/	12/13
Sample Type:	3 L Zefon Bag	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	
141-78-6	Ethyl Acetate	ND	1.0	ND	0.28	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.50	ND	0.080	
110-82-7	Cyclohexane	ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.50	ND	0.093	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client:Webster Environmental AssociatesALS Project ID: P1304046Client Sample ID:Method BlankALS Sample ID: P130912-MBClient Project ID:Sunnyvale

Test Code:	EPA TO-15 Modified	Date Collected: NA	A
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: NA	A
Analyst:	Lusine Hakobyan	Date Analyzed: 9/	12/13
Sample Type:	3 L Zefon Bag	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	μg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:	Webster Environmental Associates
Client Project ID:	Sunnyvale

ALS Project ID: P1304046

Test Code:	EPA TO-15 Modified	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date(s) Collected: 9/11/13
Analyst:	Lusine Hakobyan	Date(s) Received: 9/12/13
Sample Type:	3 L Zefon Bag(s)	Date(s) Analyzed: 9/12/13
Test Notes:		

Client Sample ID	ALS Sample ID	1,2-Dichloroethane-d4 Percent	Toluene-d8 Percent	Bromofluorobenzene Percent	Acceptance	Data
Chefft Sample ID	ALS Sample ID	Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P130912-MB	102	104	<u>97</u>	70-130	Quanner
Sludge Bed Surface	P1304046-001	101	101	101	70-130	
Fan on Roof of Primary	P1304046-002	100	102	103	70-130	
DAF Effluent Weir	P1304046-003	101	103	101	70-130	
Fixed Growth Reactor #3	P1304046-004	100	103	102	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.