Prepared By: Thom Besett Reviewed By: Wall of Kavau

Walid Karar

CITY OF SUNNYVALE

MASTER PLAN AND PRIMARY TREATMENT DESIGN

TECHNICAL MEMORANDUM

GRIT CHARACTERIZATION STUDY: MASTER PLAN

FINAL *Carollo*[°] December 2013 in association with

CITY OF SUNNYVALE

MASTER PLAN AND PRIMARY TREATMENT DESIGN

TECHNICAL MEMORANDUM

GRIT CHARACTERIZATION STUDY: MASTER PLAN

TABLE OF CONTENTS

Page No.

1.0	OVERVIEW	.1
2.0	OBSERVATIONS AND CONCLUSIONS	.1
3.0	RECOMMENDATIONS	10

APPENDIX – Black Dog Analytical Report

LIST OF TABLES

Table 1	Grit Quantities	1
Table 2	Grit Size Group	3

LIST OF FIGURES

Figure 1	Grit Sampling Location	. 2
Figure 2	Influent and Collected Grit Size Distribution on July 17	
Figure 3	Influent and Collected Grit Size Distribution on July 18	. 6
Figure 4	Influent and Primary Sludge Grit Size Distribution on July 17	. 7
Figure 5	Influent and Primary Sludge Grit Size Distribution on July 18	. 8
Figure 6	Influent Grit Settling Velocity Distribution by Weight	. 9

GRIT CHARACTERIZATION STUDY: MASTER PLAN

1.0 OVERVIEW

The City of Sunnyvale is currently in the process of upgrading their existing Water Pollution Control Plant (WPCP) as part of a master planning/primary facilities project. This includes the evaluation of grit removal technologies as part of constructing a new headworks facility. Completion of a grit characterization study will assist with the selection of the preferred technology and help to optimize the design and operation of the selected grit removal process. The purpose of the study was to assess the amounts of grit in the influent to the WPCP, characterize it by size and weight distribution, and determine its settleability. Additionally, the study was to characterize the grit in the primary sludge and the grit currently being removed at the WPCP.

On July 16, 17, and 18, 2013 Black Dog Analytical (BDA) performed sampling and field testing of the influent, primary sludge, and captured grit at the WPCP. Samples were collected on the influent and captured grit from 8 a.m. until 2 p.m. on each of the three days. A composite sample of the primary sludge from all sedimentation tanks in service was collected at 10 a.m. on those days.

During the testing period, the process and grit slurry flow streams were as depicted in Figure 1. The figure also indicates the locations where sampling for grit was performed.

The report prepared by BDA provides an in-depth discussion of the sampling and testing protocol. It is included in the Appendix.

2.0 OBSERVATIONS AND CONCLUSIONS

Table 1Grit QuantitiesMaster Plan and Primary Treatment DesignCity of Sunnyvale							
Plant Grit ⁽²⁾				Remov	ved Grit ⁽²⁾	Primary Sludge Grit ⁽³⁾	
Date	Flow ⁽¹⁾ , MG	Conc. ⁽⁴⁾ , Ib/MG	Load ⁽⁴⁾ , Ibs	Volume, cf	Weight ⁽⁴⁾ , Ibs	Conc. ⁽⁴⁾ , lb/MG of Sludge	
16-Jul	2.304	181.0	417	3.53	26.1	1240	
17-Jul	2.282	40.7	93	2.80	18.6	1115	
18-Jul	2.301	25.1	58	2.48	13.5	1062	
Notes:(1)Volume of influent plant flow during the sampling period 8 AM – 2PM.(2)Total during sampling period 8 AM - 2 PM.(3)Grab samples at 10 AM.(4)Fixed solids (ash).							

A summary of the results contained in the report by BDA is presented in Table 1.

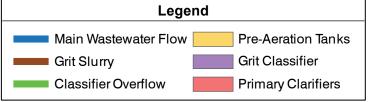


Figure 1 GRIT SAMPLING LOCATION GRIT CHARACTERIZATION STUDY MASTER PLAN AND PRIMARY TREATMENT DESIGN CITY OF SUNNYVALE

sun1013f1-9265.ai

A review of Table 1 yields the following observations:

- Collected Grit. Grit removed and captured during the six hours of sampling decreased each day of the program. The unit weight (lb/MG of influent flow) of the collected grit decreased over nearly 50 percent from July 16 to 18. It appears that there was some unusual activity that could account for the unusual grit concentrations observed on July 16 (see below).
- The amount of moisture and organics in the collected grit was fairly consistent ranging from 62 to 67 percent and 22 to 25 percent, respectively. The amount of organics was typical of older grit handling systems but the amount of moisture was significantly higher than most older systems. The quality of the collected grit in terms of amounts of both moisture and organics can be improved significantly with newer grit handling technologies.
- Primary Sludge Grit. Grit recovered from the primary sludge grab samples decreased each day of the program. The unit weight (lb/MG of influent flow) change from July 16 to July 18 of 17 percent was considerably less than the change in collected grit. The concentration of grit in the primary sludge is significantly less than typically found at wastewater treatment plants.
- Influent Wastewater Grit. Grit in the influent wastewater exhibited the largest decrease during the sampling program. The unit weight (Ib/MG of influent flow) decreased 78 percent from July 16 to July 17 and 38 percent from July 17 to July 18.

To simplify the design criteria for grit removal and handling, it is common practice to group grit size distribution into the four gradations shown in Table 2.

Table 2Grit Size GroupMaster Plan and Primary Treatment DesignCity of Sunnyvale				
Wet Sieve Size, microns Gradation				
≤ 105		Extra Fine		
> 105 ≤ 15	50	Fine		
> 150 ≤ 21	10	Medium		
> 210		Coarse		

A review of grit size distribution and settling velocities obtained from the sampling and contained in the BDA report allows these additional observations:

• Grit Size Distribution. The grit size distribution was fairly consistent in the collected grit and primary sludge during the three days of sampling. The coarse (>210 μ) particles in the collected grit was in the 80 to 90 percent range and in the primary

sludge was in the 40 to 50 percent range. The grit size distribution in the influent wastewater varied greatly with the percent of coarse particles decreasing each day – approximate percentages were 95 percent on July 16, 80 percent on July 17, and 60 percent on July 18.

Influent Wastewater Grit Settling. The settling characteristic of the influent wastewater particles was much slower than the size would indicate. On July 16, almost all particles settled slower than a 150 µ spherical sand particle. On July 17, over 90 percent of the particles settled slower than a 150 µ spherical sand particle and on July 18, the percentage was 80 percent.

A study and analysis of these observations yields the following conclusions:

- The influent grit data on July 16 is anomalous and should not be used for design purposes. Based on discussions with WPCP staff, it appears that one of the digesters was being drained on July 16.
- Influent grit is larger and settles slower than is typically found in grit sampling/testing at other plants.
- The existing grit removal system removes about 20 percent of the influent grit.
- The moisture content of the removed grit is approximately 65 percent and its organic content is approximately 20 to 25 percent. A good grit handling system can improve these values considerably.

The percentage by weight (fixed solids) of each size group in the influent and collected grit is shown in Figure 2 (for July 17) and Figure 3 (for July 18).

The percentage by weight of each size group in the influent and primary sludge grit is shown in Figure 4 (for July 17) and Figure 5 (for July 18).

These figures indicate that the greatest percentage of grit by weight is contained in the coarse group. The figures also demonstrate a significant shift in the size distribution in the grit particles between the grit particles in the influent and those in the primary sludge. Biological breakdown of the organics attached to the influent grit particles is the cause of this phenomenon. A significant portion of the coarse grit found in the influent is converted to finer sizes during its detention in the primary sludge. A significant increase in the amount of grit removed can be attained by targeting the coarse group. The settling velocity distribution (expressed in terms of surface overflow rate) for the influent grit is shown on Figure 6. This data shows that for the City of Sunnyvale, the coarse-sized grit particles have a settling velocity more similar to a fine-sized grit particle.

4

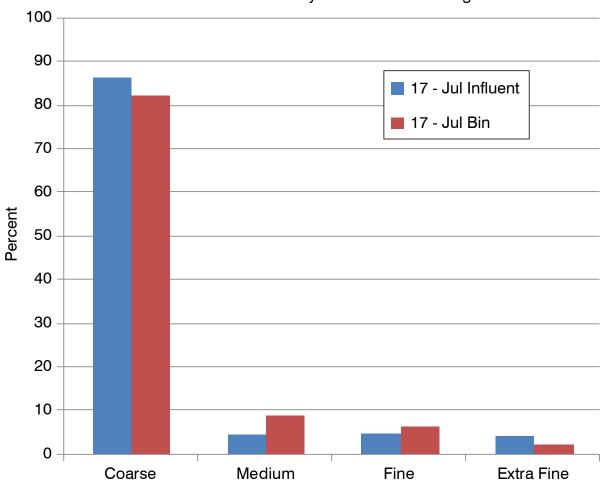


Figure 2 INFLUENT AND COLLECTED GRIT SIZE DISTRIBUTION ON JULY 17 GRIT CHARACTERIZATION STUDY MASTER PLAN AND PRIMARY TREATMENT DESIGN CITY OF SUNNYVALE

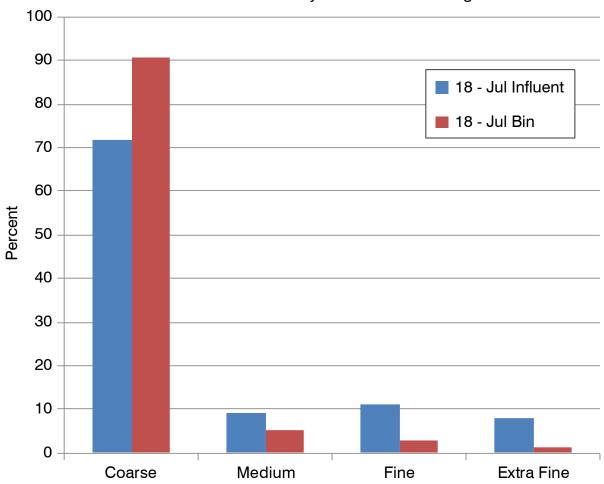


Figure 3 INFLUENT AND COLLECTED GRIT SIZE DISTRIBUTION ON JULY 18 GRIT CHARACTERIZATION STUDY MASTER PLAN AND PRIMARY TREATMENT DESIGN CITY OF SUNNYVALE

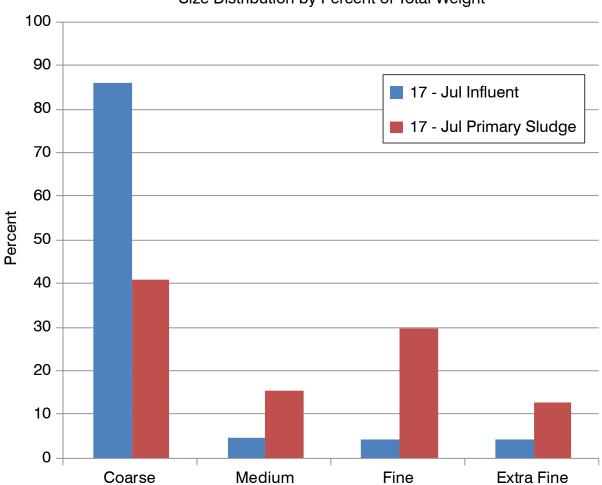


Figure 4 INFLUENT AND PRIMARY SLUDGE GRIT SIZE DISTRIBUTION ON JULY 17 GRIT CHARACTERIZATION STUDY MASTER PLAN AND PRIMARY TREATMENT DESIGN CITY OF SUNNYVALE

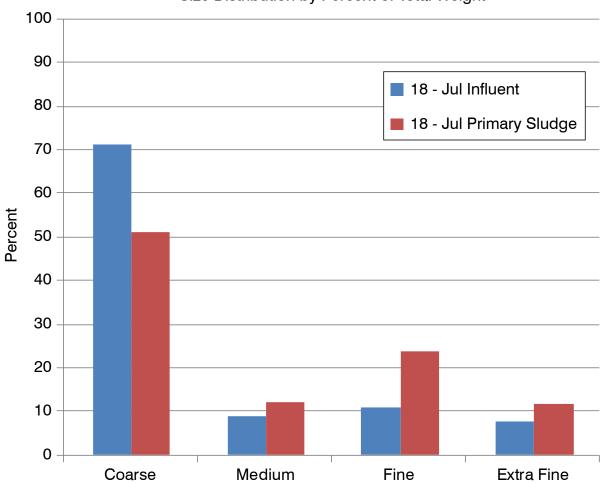
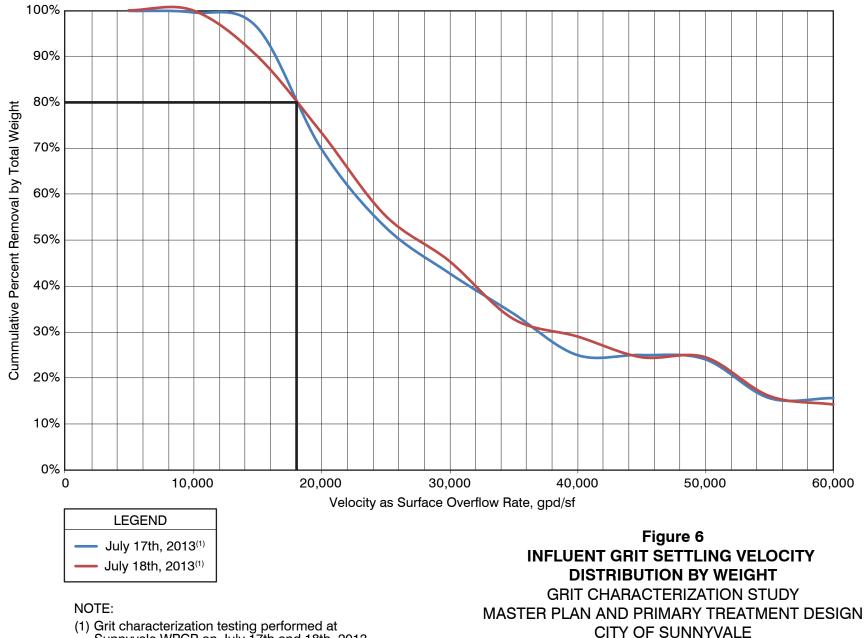



Figure 5 INFLUENT AND PRIMARY SLUDGE GRIT SIZE DISTRIBUTION ON JULY 18 GRIT CHARACTERIZATION STUDY MASTER PLAN AND PRIMARY TREATMENT DESIGN CITY OF SUNNYVALE

(1) Grit characterization testing performed at Sunnyvale WPCP on July 17th and 18th, 2013.

Because the settling velocity of the coarse grit is significantly less than that of comparability-sized sand, a new grit removal system would have to target grit settling as slow as 0.85 cm/sec (equivalent to a surface overflow rate of 18,000 gpd/sf) in order to significantly increase the capture of the new system.

3.0 RECOMMENDATIONS

Good performance of the new grit removal systems can be achieved by application of newer technologies. Potential technologies include forced vortex grit, aerated grit basins or the proprietary HeadCell[®] units. It is Carollo's and HDR's experience that the forced vortex grit basin technology has not been effective in removing slow settling grit particles. Therefore, this technology would not be considered a viable alternative.

It is recommended that a surface overflow rate (SOR) of 18,000 gpd/sf be used as the design criteria for sizing of the aerated grit and HeadCell[®] process units. Based on the influent grit settling characteristics presented in Figure 6, this would result in a theoretical removal of 80± percent by weight of the grit entering the WPCP and an expected practical removal in the range of 40 to 60 percent at the design flow. This SOR criteria is considered conservative and results in larger and more expensive units, therefore the City should be involved in the overall decision-making process for the proposed grit removal technology. For additional review and comparison of grit removal and grit handling technologies, and further development of design criteria recommendations, refer to the Preliminary Treatment Technical Memorandum.

Technical Memorandum
APPENDIX – BLACK DOG ANALYTICAL REPORT

GRIT CHARACTERIZATION STUDY

SUNNYVALE WATER POLLUTION Control plant

- SUNNYVALE, CA

STUDY PREPARED FOR CAROLLO ENGINEERS 10540 TALBERT AVE., SUITE 200 EAST FOUNTAIN VALLEY, CA 92708

> 2402 E. 2659TH RD. MARSEILLES, IL 61341

Table of Contents	
Section Title	Page
List of Figures	3
List of Tables	4
Definitions/Abbreviations	5
Introduction	7
Objectives	7
Methods/Materials	8
Discussion of Results	15
Conclusions	29
Bibliography	30
Appendix A – Raw Data	31
A-1 Concentration Calculation Spreadsheet	32
A-2 Solids Analysis Bench Sheets	33
A-3 Grit Concentration Calculation Bench Sheet	36
A-4 SES Data Analysis	37
A-5 SES Charts	46
A-6 SES Chart Analysis	51
A-7 Median SES versus Median Physical Size	56

Appendix B - Calculations

List of Figures

- 1. Sunnyvale WPCP Influent VIS
- 2. PVC Splitter and Valve
- 3. Grit Settler
- 4. Dewatered Grit
- 5. Modified Imhoff Cone for SES Measurements
- 6. Sunnyvale WPCP Flow Data
- 7. Fractional Distribution of Grit Collected From the Influent Wastestream at the Sunnyvale WPCP
- 8. Cumulative Distribution of Grit Collected From the Influent Wastestream at the Sunnyvale WPCP
- 9. Concentrations of Grit Collected From the Influent Wastestream at the Sunnyvale WPCP
- 10. Comparison of the Sunnyvale WPCP Influent Grit Physical Size and Sand Equivalent Size on July 16, 2013
- 11. Comparison of the Sunnyvale WPCP Influent Grit Physical Size and Sand Equivalent Size on July 17, 2013
- 12. Comparison of the Sunnyvale WPCP Influent Grit Physical Size and Sand Equivalent Size on July 18, 2013
- 13. Median Size Distribution of Influent Grit at the Sunnyvale WPCP vs. a Clean Sand Distribution
- 14. Fractional Distribution of Grit Collected From the Primary Sludge at the Sunnyvale WPCP
- 15. Cumulative Distribution of Grit Collected From the Primary Sludge at the Sunnyvale WPCP
- 16. Concentrations of Grit From the Primary Sludge at the Sunnyvale WPCP
- 17. Comparison of the Sunnyvale WPCP Primary Sludge Grit Physical Size and Sand Equivalent Size on July 16, 2013
- 18. Comparison of the Sunnyvale WPCP Primary Sludge Grit Physical Size and Sand Equivalent Size on July 17, 2013
- 19. Comparison of the Sunnyvale WPCP Primary Sludge Grit Physical Size and Sand Equivalent Size on July 18, 2013
- 20. Median Size Distribution of Primary Sludge Grit Present at the Sunnyvale WPCP vs. a Clean Sand Distribution
- 21. Fractional Distribution of Dewatered Grit at the Sunnyvale WPCP
- 22. Cumulative Distribution of Dewatered Grit at the Sunnyvale WPCP
- 23. Concentrations of Dewatered Grit at the Sunnyvale WPCP
- 24. Comparison of the Sunnyvale WPCP Dewatered Grit Physical Size and Sand Equivalent Size on July 16, 2013
- 25. Comparison of the Sunnyvale WPCP Dewatered Grit Physical Size and Sand Equivalent Size on July 17, 2013
- 26. Comparison of the Sunnyvale WPCP Dewatered Grit Physical Size and Sand Equivalent Size on July 18, 2013
- 27. Median Size Distribution Dewatered Grit at the Sunnyvale WPCP vs. a Clean Sand Distribution

List of Tables

- 1. Sieve Size Equivalents
- 2. Sunnyvale WPCP Grit Evaluation Sampling Period
- 3. Predicted Removal Efficiencies (%) of a System Designed To Remove Grit of a Specific SES at the Sunnyvale WPCP
- 4. Predicted Removal Efficiencies (%) of a System Designed To Remove Primary Sludge Grit of a Specific SES at the Sunnyvale WPCP
- 5. Sunnyvale WPCP Dewatered Grit Characteristics

Definitions/Abbreviations

gpm - gallons per minute.

Grit – A settleable inorganic kernel with attached organics larger than 50 microns and characterized by physical size and settling velocity.

Grit Concentration – the amount of grit present in the wastestream based on the fixed solids measurements

Grit Fixed Solids (FS) – also expressed as "**fixed solids**" - the inorganic portion of sample remaining after organics are removed by ashing in a muffle furnace at 550°C.

Ibs./MG – Pounds per Million Gallons

MG - Million Gallons

- **MGD** Million Gallons per Day
- NR1 the Reynolds number for the trial SES
- NR2 the Revised Reynolds number

SAA – Surface Active Agents – material affixed to the grit particle, such as organics, fats, oils, and greases that may affect the settling velocity of municipal grit.

Sample – All material accumulated in the bottom of the grit settler which includes settleable organics.

Sand Equivalent Size (SES) - The sand particle size, measured in microns, having the same settling velocity as the selected grit particle.

Sed h, cm – The height of water in the Imhoff cone through which the sediment passed to reach the surface of accumulated material during SES determination

Sed Time, sec – The time required for sediment to reach the recorded volume during SES determination

Sed vel, cm/s – the settling velocity (v) of the sediment reaching a particular settled volume

Sed. Vol., cc – Sedimentation Volume (cc or ml) – The amount of material that settles in the Imhoff Cone during SES determinations

SES, d1, u – Trial Sand Equivalent Size, in microns

Definitions/Abbreviations Continued

SES, d2, u - Revised Reynolds Number based on NR2 and d1

VIS – Vertically Integrated Sampler

Vol Frac, % - the cumulative sedimentation percentage occurring during SES determination

WPCP – Water Pollution Control Plant

Introduction

The City of Sunnyvale, CA is assessing the amounts and characteristics of grit entering their Water Pollution Control Plant (WPCP) as well as primary sludge and dewatered grit. Data collected during this study will contribute to future headworks design considerations.

In conventional grit removal system design, grit has commonly been treated as clean sand with a specific gravity of 2.65. Metcalf and Eddy's Wastewater Engineering: Treatment and Reuse (standard textbook) says "Grit consists of sand, gravel, cinders, or other heavy materials that have specific gravities or settling velocities considerably greater than those of organic particles". These inorganic solids are often associated with Surface Active Agents (SAA) that include fats, oils, greases, and other organic materials can lower their effective specific gravity to 1.3 (Tchobanoglous, 2003). The shape and composition of grit and inert solids also greatly affects settling velocities. Material with similar specific gravities may have very different settling velocities due to the shape of the particle.

When determining quantities of grit during this study, grit will be defined as settleable inorganic material larger than 50 microns. Settling velocities, attached organics and SAA has been considered during the on-site laboratory analyses. The settling velocity is expressed as the Sand Equivalent Size (SES), which is the sand particle size having the same settling velocity as the more buoyant grit particle. Materials less than 50 microns in size have been considered silt or clay and thus excluded from the data.

Study Objectives

The purpose of this study was to determine the amounts and characteristics of influent, primary sludge and dewatered grit collected by the grit chambers at the Sunnyvale WPCP.

Methods/Materials

Obtaining Representative Grit Fixed Solids (FS) Sample

The volume and characteristics of grit received at wastewater treatment facilities can vary widely depending on the characteristics of the collection system, weather conditions, septic waste haulers, and industrial activities. The analytical procedures used in compiling these data take into account and compensate for the non-homogeneity of the grit.

The influent samples were collected from the influent channel after screening (Figure 1). A Vertically Integrated Sampler (VIS) was secured in the channel and positioned to face the flow. A VIS is constructed from a section of four-inch diameter PVC pipe with a sealed bottom and a slot cut along the length of the pipe. A suction hose plumbed to a trash pump was affixed to a two-inch pipe secured approximately two-inches from the bottom of the sampler. The VIS is designed to collect sample from the entire height of the water column. The slot width is determined by the velocity present in the channel during maximum flows. Since the pump rate and the channel depth are known, it is possible to calculate the width of slot required to match the velocity across the slot with the velocity in the wastestream. If a slot is too wide, the slow velocity may create a non-isokinetic condition that may cause a grit particle to go around the VIS and avoid being sampled. A slot that is too thin can always be widened or, if the pump is starving, reduce the speed of the pump. During the start of the sampling event, the trash pump will often remove wastewater at a rate higher than can flow through the slot; therefore the pump speed is lowered until the plant flow increases. Turbulence present in the channel helped insure a homogenous sample was collected.

Figure 1. Sunnyvale WPCP Influent VIS

A portion of the influent sample is diverted to a grit settler. A PVC wye is used to split the flow (Figure 2), and a valve following the wye is used to increase flow to the settler if necessary. A one-inch hose supplies the grit settler, while a two-inch hose returns the majority of flow to the wastestream.

Figure 2. PVC Splitter and Valve

Grit settlers (Figure 3) are constructed from 50-gallon plastic storage tanks with an influent port and a discharge weir. Flow enters the tank and is diverted to the side with a 90° elbow to reduce the velocity and turbulence. Grit settles to the bottom of the tank, and wastewater exits through the discharge fitting at the top of the tank. In order to settle 50-micron grit with a specific gravity of 2.65, the overflow rate must be less than three-gallons per minute/ft² of surface area. The settler has a diameter of 24-inches, or a surface area of 3.14 ft². At ten-gpm, the overflow rate is 3.18 gallons per minute/ft². The settler feed rate is adjusted to less than eight-gpm to insure settling of fine grit and this is checked by timing the overflow rate of the settler. This is repeated every 30 minutes to insure stability. The excess flow provided by the pump is bypassed back into the wastestream.

At the end of the sampling period, the settler contents are allowed to settle for 20 minutes. The supernatant is discarded and grit that has accumulated in the bottom of the settler is rinsed into buckets. The liquid portions of the grit samples are gradually poured off until the remaining grit/sludge samples are thick enough to obtain a homogenous mixture without grit settling out of the slurry. The entire volume of each sample is recorded before being split for analysis. Since bacteria will reduce the organics that are attached to the grit particles, it is important to perform the analyses on fresh grit immediately after collection. If immediate analysis is not possible, samples may be stored at 4° C for no longer than 12 hrs.

Primary Sludge

Samples of primary sludge were collected from the common sampling port. Five gallons of sludge were collected from each of the five basins in service, totaling 25 gallons. Basins 2, 3, 6, 7, and 8 were in service during the study. Each five-gallon sample was split into several buckets and rinsed, the supernatant was discarded, and the remaining grit from each bucket combined into a composite sample. This process is detailed below.

Primary sludge processing procedure

1. Five gallons of primary sludge were collected from the sludge sampling port located on the primary sludge pump.

2. The sample is split evenly into six buckets

3. Each bucket is rinsed, directing water towards the side of the bucket to create a circular motion.

4. The washed grit is allowed to settle in the buckets. Settling is assumed to have occurred once the circular motion has ceased or significantly subsided.

5. Each bucket is decanted, leaving only the collected grit.

6. The buckets are combined into a composite bucket.

Dewatered Grit

At the beginning of the sampling segment, the grit dumpster contents were flattened and covered with a plastic sheet. The pile of grit accumulated during sampling was measured for height and width to determine a volume. A grab sample was collected for sieving, %TS and %TVS determination.

Determination of Grit Particle Distribution


A 200-gram portion of the sample collected by the 50-micron Grit Settler is immediate sieved. Wet sieving for size fractions and the SES settling tests are conducted on fresh grit from the sewer waste stream samples as the Surface Active Agents (SAA) attached to the grit kernel may substantially reduce its effective specific gravity and consequently it's settling velocity. Sieve sizes are listed below in Table 1.

Table 1. Sieve Size Equivalents					
		Opening			
	Tyler				
U.S. Sieve Size	Equivalent	microns	inches		
1/4	3.25 mesh	6300	0.2500		
1/8	6.5 mesh	3180	0.1250		
#12	10 mesh	1680	0.0661		
#20	20 mesh	841	0.0331		
#50	48 mesh	297	0.0117		
#70	65 mesh	210	0.0083		
#100	100 mesh	149	0.0059		
#140	150 mesh	105	0.0041		
#200	200 mesh	74	0.0029		
#270	270 mesh	53	0.0021		
Pan					

Determination of Sand Equivalent Size (SES) distribution

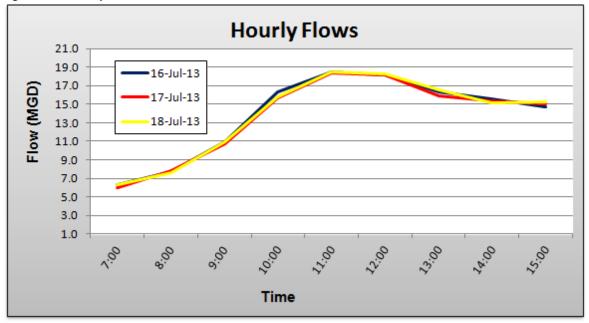
Settling tests were conducted immediately on solids passing the U.S. #20 sieve and sequentially retained on the #50, #70, #100, #150, #200, and #270 sieves. Large organics often interfere with the settling of grit on screens larger than #50. A portion of the retained material is placed into a modified Imhoff cone filled with water (See Figure 5). The column is inverted and as the grit settles in the cone corresponding time and volume measurements are recorded. The objective of these measurements is to determine the size of a sand sphere having the same settling velocity as the collected grit fraction.

Figure 5. Modified Imhoff Cone for SES Measurements

The weight measurements of the grit particles retained on each of the ten sieves were determined according to methods SM2540B and SM2540E as outlined in Standard Methods for the Examination of Water and Wastewater, 1998 APHA, AWWA, WEF, 20th edition. Fixed solids fractions were arranged into fractional and cumulative distributions. From this data a cumulative curve factoring physical size and weight of fixed solids is generated. All solids data are listed in Appendix B-1 "Fractional Solids Analysis"

Data from the settling tests are entered into a spreadsheet for each size fraction that converts the settling velocities and volumes into Sand Equivalent Size. The SES value generated is plotted against the corresponding volume fraction to generate a series of SES charts. Each chart is divided into 20-micron SES intervals and the percentages of grit falling within each interval are entered into a spreadsheet for analysis. From this data, a cumulative curve factoring SES and weight of fixed solids per size fraction is generated. By comparing the "SES" curve with the "Physical Size" curve, we can determine the amount of grit that can bypass a grit removal system designed around a known sand particle size.

The SES charts are also used to compare the average SES within a sieve fraction with the average physical size of clean, round silica sand for that same sieve fraction. To calculate the concentration of grit present in the sewer during normal flow conditions, the volume of wastewater sampled each day is compared to the measured volume of wastewater passing through the sewer during the sampling periods. The total amount of grit collected during each sampling period is applied to the total volume of wastewater to determine the lbs/MG of grit present in the sewer.


Discussion of Results

Sunnyvale WPCP Influent Grit Characterization

The trial was conducted on July 16, 17, and 18, 2013. Sampling conditions are presented below in Table 2, and flows present during the sampling days are charted in Figure 6.

Table 2. Sunnyvale WPCP Grit Evaluation Sampling Period						
Average Influent Flow During Sampling PeriodAverage Influent StartSettler Fer FinishSampling Date(MGD)TimeTime						
July 16, 2013	13.826	8:00	14:00	6.0	7.80	
July 17, 2013	13.692	8:00	14:00	6.0	7.98	
July 18, 2013	13.806	8:00	14:00	6.0	8.13	

Figure 6. Sunnyvale WPCP Flow Data

Grit Size Distributions

Figures 7 and 8 plot the distributions of grit collected at the treatment facility, and Figure 9 plots the fractional concentrations. From Figures 7 and 8, between 61.5 and 92.2% of influent grit was larger than 297-microns physical size, while between 7.8% and 38.5% of grit was smaller than 297-microns. The concentration of influent grit varied despite a consistent flow, totaling 181 lbs/MG on July 16, 40.7 lbs/MG on July 17, and 25.1 lbs/MG on July 18.

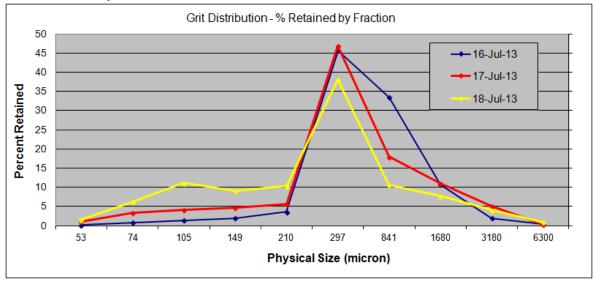
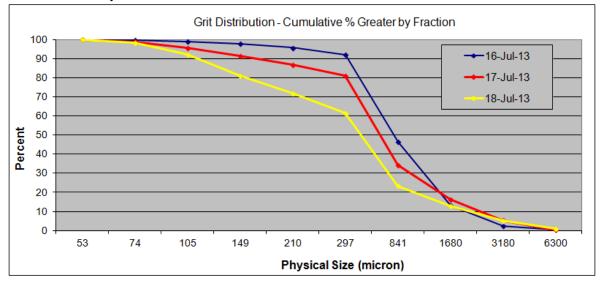



Figure 7. Fractional Distribution of Grit Collected From the Influent Wastestream at the Sunnyvale WPCP

Figure 8. Cumulative Distribution of Grit Collected From the Influent Wastestream at the Sunnyvale WPCP

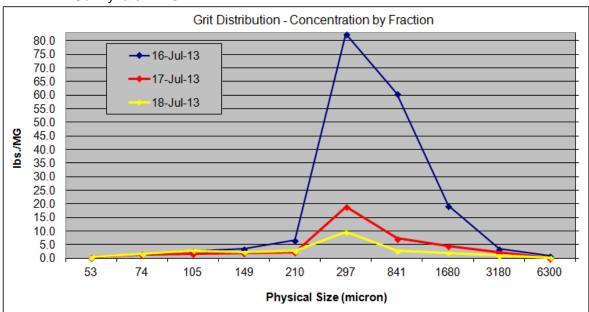


Figure 9. Concentrations of Grit Collected From the Influent Wastestream at the Sunnyvale WPCP

Settling Characteristics

Sand Equivalent Size (SES) vs. Physical Size plots can be used to determine grit removal system design parameters. The following table lists theoretical removal efficiencies for a system designed to remove grit based on the SES data collected from the influent sampling location.

Table 3. Predicted Removal Efficiencies (%) of a System Designed to Remove Grit of a Specific SES at the Sunnyvale WPCP						
Sample Date300-micron SES Design150-micron SES Design100-micron SES Design75-micron 						
July 16, 2013	39.5	82.5	98.3	100		
July 17, 2013	12.5	51.5	91.6	99.8		
July 18, 2013	10.9	48.8	92.6	100		

Efficiencies listed in Table 3 are found in Figures 10, 11 and 12, which compares the Sand Equivalent Size and physical size of influent grit. Figure 13 compares the physical and SES distributions of collected grit with a clean sand distribution. Values found in Figure 13 are determined from the median SES of material on each sieve, and fractional data is not applied as is the previous companion charts.

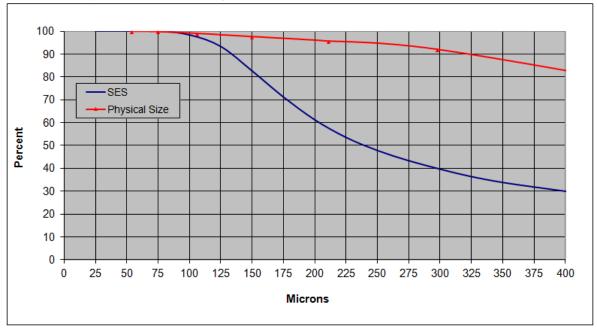
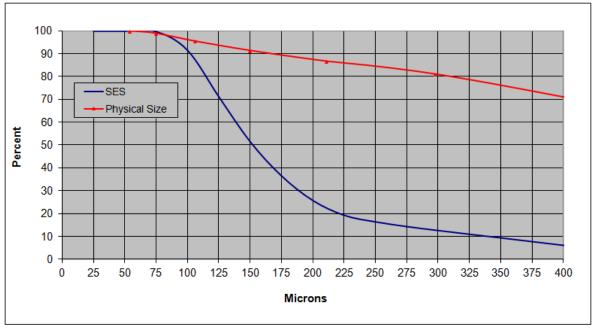



Figure 10. Comparison of the Sunnyvale WPCP Influent Grit Physical Size and Sand Equivalent Size on July 16, 2013

Figure 11. Comparison of the Sunnyvale WPCP Influent Grit Physical Size and Sand Equivalent Size on July 17, 2013

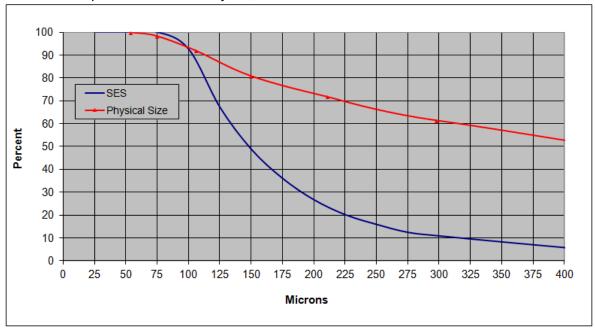
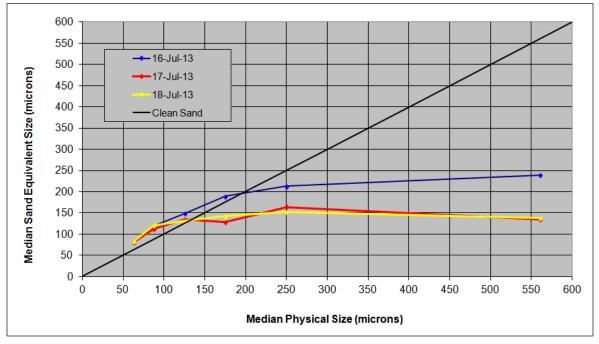



Figure 12. Comparison of the Sunnyvale WPCP Influent Grit Physical Size and Sand Equivalent Size on July 18, 2013

Figure 13. Median Size Distribution of Influent Grit at the Sunnyvale WPCP vs. a Clean Sand Distribution

Settling velocities of the influent grit were slower on July 17 and 18, with heavier grit present on July 16. This is typical for wastestreams with high grit concentrations.

Primary Sludge

Samples were collected at 10:00 am on July 16, 17, and 18 according to the method previously described.

Grit Size Distributions

Figures 14 and 15 plot the distributions of grit present in the primary sludge, and Figure 16 plots the fractional concentrations. From Figures 14 and 15, between 27.3 and 36.3% of grit was larger than 297-microns physical size, while between 63.7 and 72.7% of grit was smaller than 297-microns. A significant portion of the distribution occurs below 300-micron, identifying the type of material that is bypassing the grit chambers. The concentration of grit was similar for all three days, with 1,240 lbs/MG on July 16, 1,115 lbs/MG on July 17, and 1,062 lbs/MG on July 18.

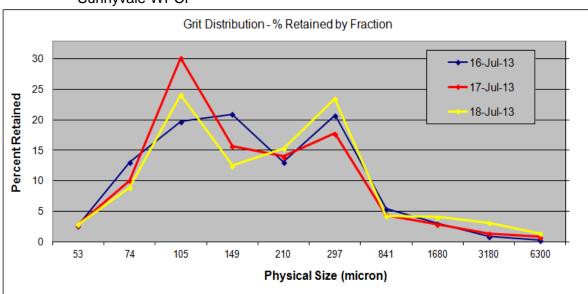


Figure 14. Fractional Distribution of Grit Collected From the Primary Sludge at the Sunnyvale WPCP

Figure 15. Cumulative Distribution of Grit Collected From the Primary Sludge at the Sunnyvale WPCP

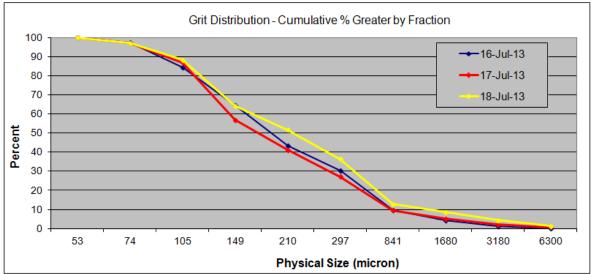
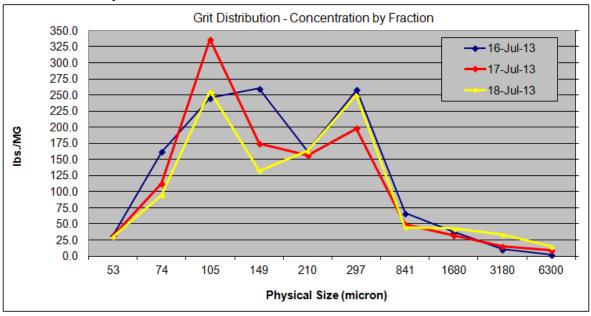
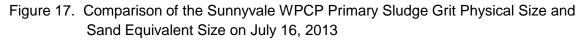
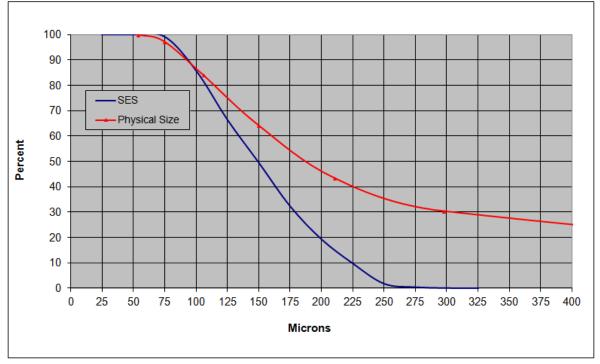



Figure 16. Concentrations of Grit Collected From the Primary Sludge at the Sunnyvale WPCP




Settling Characteristics

Sand Equivalent Size (SES) vs. Physical Size plots were determined for each primary sludge composite sample. The following table lists theoretical removal efficiencies for a system designed to remove grit based on the SES data collected from the sludge.

	Table 4. Predicted Removal Efficiencies (%) of a System Designed to RemovePrimary Sludge Grit of a Specific SES at the Sunnyvale WPCP									
Sample Date300-micron SES Design150-micron SES Design100-micron SES Design75-micron S Design										
July 16, 2013	0.1	49.5	85.9	99.2						
July 17, 2013	3.4	38.9	77.8	96.1						
July 18, 2013	1.2	51.2	85.6	99.3						

Efficiencies listed in Table 4 are found in Figures 17, 18 and 19, and Figure 20 compares the physical and SES distributions of collected grit with a clean sand distribution.

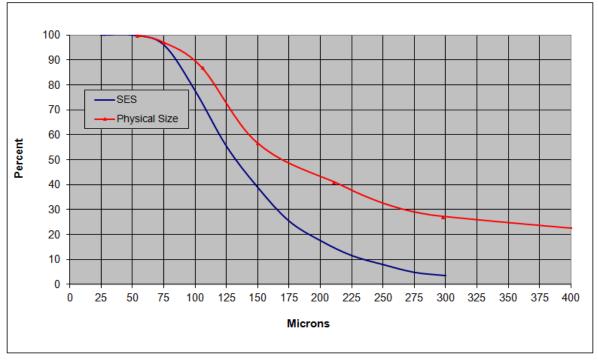
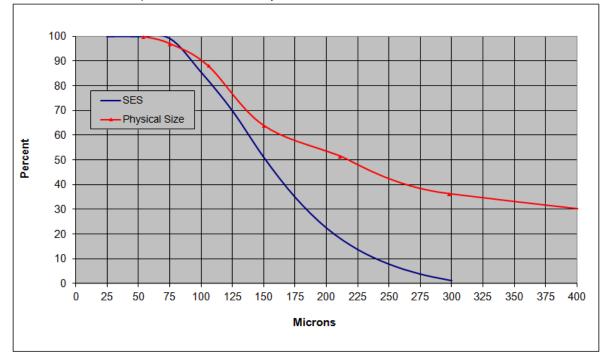



Figure 18. Comparison of the Sunnyvale WPCP Primary Sludge Grit Physical Size and Sand Equivalent Size on July 17, 2013

Figure 19. Comparison of the Sunnyvale WPCP Primary Sludge Grit Physical Size and Sand Equivalent Size on July 18, 2013

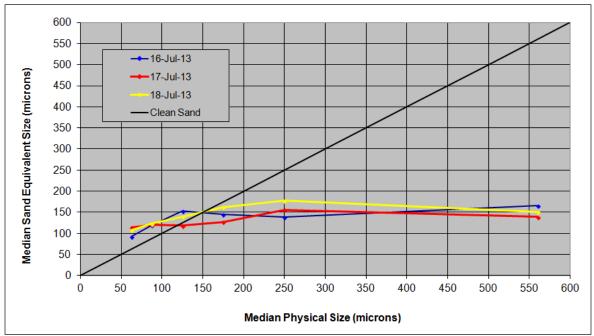


Figure 20. Median Size Distribution of Primary Sludge Grit at the Sunnyvale WPCP vs. a Clean Sand Distribution

Dewatered Grit

Sampling occurred on July 16, 17, and 18, 2013. Data collected for the dumpster contents are listed below in Table 5.

Table 5.	Table 5. Sunnyvale WPCP Dewatered Grit Characteristics									
Sampling Date	Volume (in ³)	%TS	%TVS	Total lbs. of Inert Material (Fixed Solids)	Density (Ibs/ft ³)					
July 16, 2013	6,107.26	32.61	21.69	26.14	29.0					
July 17, 2013	4,846.69	38.45	22.38	18.60	22.0					
July 18, 2013	4,289.32	34.37	25.08	13.45	21.0					

Grit Size Distributions

Figures 21 and 22 plot the distributions of grit exiting the facility, and Figure 23 plots the fractional concentrations. From Figures 21 and 22, between 67.8 and 80.7% of grit was larger than 297-microns physical size, while between 19.3 and 32.2% of grit was smaller than 297-microns. The amounts of inert material accumulated in the dumpster during sampling (Table 5) follows the daily concentrations of influent grit reported above.

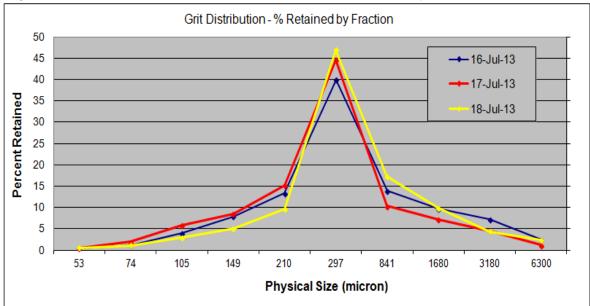
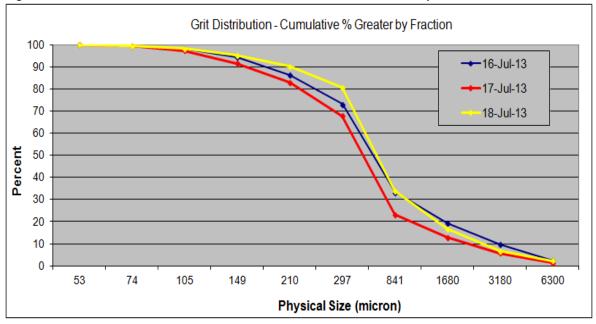
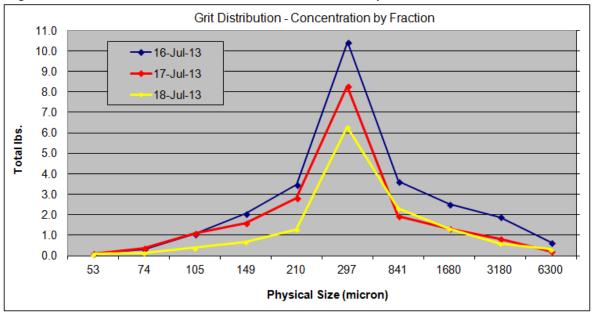


Figure 21. Fractional Distribution of Dewatered Grit at the Sunnyvale WPCP

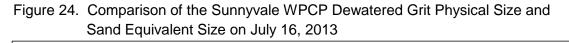

Figure 22. Cumulative Distribution of Dewatered Grit at the Sunnyvale WPCP

Figure 23. Concentrations of Dewatered Grit at the Sunnyvale WPCP

Settling Characteristics

Companion plots for the dewatered grit are found in Figures 24, 25 and 26, and Figure 27 compares the physical and SES distributions of dewatered grit with a clean sand distribution.

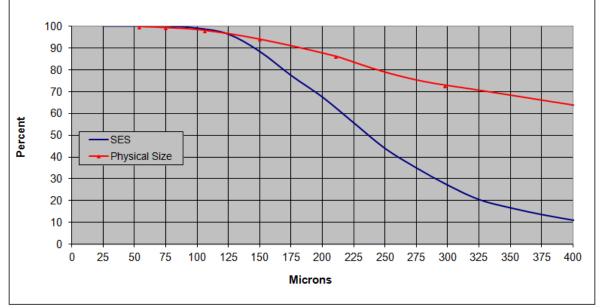
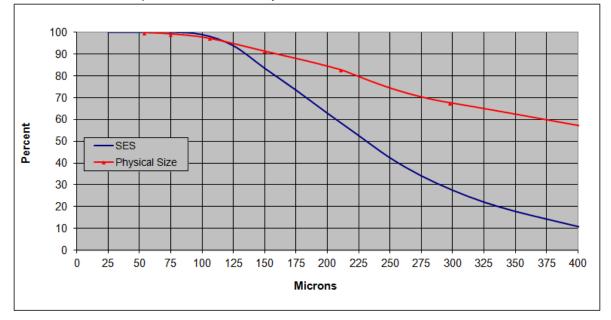



Figure 25. Comparison of the Sunnyvale WPCP Dewatered Grit Physical Size and Sand Equivalent Size on July 17, 2013

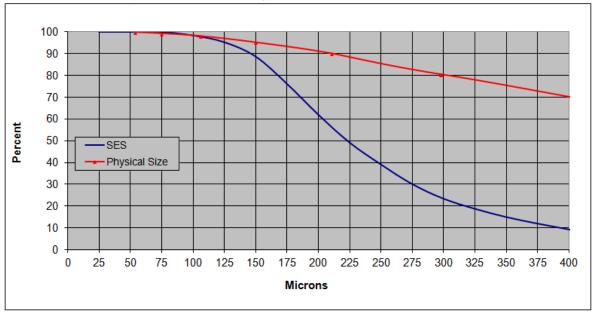
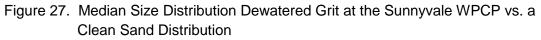
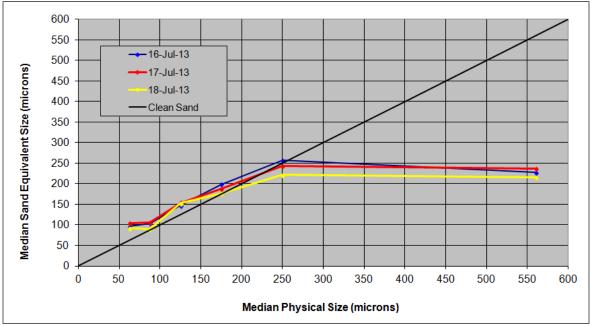




Figure 26. Comparison of the Sunnyvale WPCP Dewatered Grit Physical Size and Sand Equivalent Size on July 18, 2013

Conclusions

Sunnyvale WPCP Influent

- 1. At the Sunnyvale WPCP, between 61.5 and 92.2% of influent grit was larger than 297-microns physical size, while between 7.8% and 38.5% of grit was smaller than 297-microns. (Figures 7 and 8)
- 2. Concentrations of grit entering the facility were 181 lbs/MG on July 16, 40.7 lbs/MG on July 17, and 25.1 lbs/MG on July 18. (Figure 9) The high concentration present on July 16 may be the result of a previous high flow event.
- 3. A grit removal system design based on 150-micron Sand Equivalent Size would collect between 48.8 and 82.5% of influent grit while a 100-micron SES system would improve to between 91.6 and 98.3% efficiency. (See Table 3)

Primary Sludge

- 1. For Primary Sludge, between 27.3 and 36.3% of grit was larger than 297-microns physical size, while between 63.7 and 72.7% of grit was smaller than 297-microns. (Figures 14 and 15)
- 2. The concentration of grit totaled 1,240 lbs/MG on July 16, 1,115 lbs/MG on July 17, and 1,062 lbs/MG on July 18. (Figure 16)
- 3. Based on settling velocity data collected, a grit removal system design based on 150-micron Sand Equivalent Size would collect between 38.9 and 51.2% of primary sludge grit while a 100-micron SES system would improve to between 77.8 and 85.9% efficiency. (See Table 4)

Dewatered Grit

- 1. From the grit dumpster, between 67.8 and 80.7% of grit was larger than 297microns physical size, while between 19.3 and 32.2% of grit was smaller than 297microns. (Figures 21 and 22)
- 2. The total amount of inert material collected in the dumpster during sampling was 26.14 pounds on July 16, 18.60 on July 17, and 13.45 on July 18. (Table 5)
- 3. From Figure 27, the collected grit followed the clean sand line to between 222 and 257 microns.

Bibliography

Clesceri, L., Greenberg, A. and Eaton, A., "Standard Methods for the Examination of Water and Wastewater", 20th Edition, 1998, American Public Health Association, Washington, DC

Tchobanoglous, G., Burton, F.L. and Stensel, H.D., "Wastewater Engineering: Treatment and Reuse", 4th Edition, 2003. TATA McGraw-Hill

Appendix A – Raw Data

A-1 Concentration Calculation Spreadsheet	32
A-2 Solids Analysis Bench Sheets	33
A-3 Grit Concentration Calculation Bench Sheet	36
A-4 SES Data Analysis	37
A-5 SES Charts	46
A-6 SES Chart Analysis	51
A-7 Median SES versus Median Physical Size	56

A-1 Concentration Calculation Spreadsheet

Sample Site	Start Time	End Time	Sampling Time (hrs.)	Settler Feed Rate (gpm)	Plant Flow (MGD)	Amount of Flow During Sampling Period (MG)	Gallons Sampled	Total Grit FS Collected (grams)
Influent	8:00	14:00	6.00	7.80	13.826	3.457	2,808	230.56
Primary Sludge				#DIV/0!	1.000	0.000	25	14.06
Dewatered Grit				#DIV/0!	1.000	0.000	#DIV/0!	11856.48
				#DIV/0!	1.000	0.000	#DIV/0!	23.09
							Total Crit ES	
							Total Grit ES	
							Total Grit FS Entering	
		Total		Weight of				
	Sample	Total Sample	Sample	Weight of Sample Put		Total Grit	Entering	
	Sample Dilution/mls		Sample Dilution/volume	Sample Put	Total FS	Total Grit FS Collected	Entering Channel	Concentration
Sample Site		Sample		Sample Put in Wet Sieve	Total FS Weight (gm)	FS Collected	Entering Channel During	Concentration (Ibs/MG)
Sample Site	Dilution/mls	Sample Volume	Dilution/volume	Sample Put in Wet Sieve		FS Collected	Entering Channel During Sampling	
	Dilution/mls of sample	Sample Volume (gal)	Dilution/volume analyzed (mls)	Sample Put in Wet Sieve	Weight (gm)	FS Collected (pounds)	Entering Channel During Sampling (pounds)	(Ibs/MG)
Influent	Dilution/mls of sample	Sample Volume (gal) 0.1783	Dilution/volume analyzed (mls)	Sample Put in Wet Sieve	Weight (gm) 40.99	FS Collected (pounds) 0.51	Entering Channel During Sampling (pounds) 625.7	(Ibs/MG) 181.0

Sample Site	Start Time	End Time	Sampling Time (hrs.)	Settler Feed Rate (gpm)	Plant Flow (MGD)	Amount of Flow During Sampling Period (MG)	Gallons Sampled	Total Grit FS Collected (grams)
Influent	8:00	14:00	6.00	7.98	13.692	3.423	2,871	52.93
Primary Sludge				#DIV/0!	1.000	0.000	25	12.64
Dewatered Grit				#DIV/0!	1.000	0.000	#DIV/0!	8434.26
				#DIV/0!	1.000	0.000	#DIV/0!	11.85
							Total Grit ES	
Coursela Cita	Sample Dilution/mls	Total Sample Volume	Sample Dilution/volume		Total FS	Total Grit FS Collected	Total Grit FS Entering Channel During Sampling	Concentration
Sample Site	Dilution/mls of sample	Sample Volume (gal)	Dilution/volume analyzed (mls)	Sample Put in Wet Sieve	Weight (gm)	FS Collected (pounds)	Entering Channel During Sampling (pounds)	(Ibs/MG)
Influent	Dilution/mls	Sample Volume (gal) 0.1651	Dilution/volume	Sample Put in Wet Sieve	Weight (gm) 10.16	FS Collected (pounds) 0.12	Entering Channel During Sampling (pounds) 139.2	(Ibs/MG) 40.7
Influent Primary Sludge	Dilution/mls of sample 625 1	Sample Volume (gal) 0.1651 0.0003	Dilution/volume analyzed (mls) 120 1	Sample Put in Wet Sieve	Weight (gm) 10.16 12.64	FS Collected (pounds) 0.12 0.03	Entering Channel During Sampling (pounds) 139.2 0.0	(Ibs/MG) 40.7 1115.1
Influent	Dilution/mls of sample	Sample Volume (gal) 0.1651	Dilution/volume analyzed (mls)	Sample Put in Wet Sieve	Weight (gm) 10.16	FS Collected (pounds) 0.12	Entering Channel During Sampling (pounds) 139.2	(Ibs/MG) 40.7

Sample Site	Start Time	End Time	Sampling Time (hrs.)	Settler Feed Rate (gpm)	Plant Flow (MGD)	Amount of Flow During Sampling Period (MG)	Gallons Sampled	Total Grit FS Collected (grams)
Influent	8:00	14:00	6.00	8.13	13.806	3.452	2,928	33.36
Primary Sludge				#DIV/0!	1.000	0.000	25	12.04
Dewatered Grit				#DIV/0!	1.000	0.000	#DIV/0!	6098.92
				#DIV/0!	1.000	0.000	#DIV/0!	9.71
							Total Grit FS	
							Total Grit FS Entering	
		Total		Weight of				
	Sample	Total Sample	Sample	Weight of Sample Put		Total Grit	Entering	
	Sample Dilution/mls		Sample Dilution/volume	Sample Put	Total FS	Total Grit FS Collected	Entering Channel	Concentration
Sample Site		Sample		Sample Put in Wet Sieve	Total FS Weight (gm)	FS Collected	Entering Channel During	Concentration (lbs/MG)
Sample Site	Dilution/mls	Sample Volume	Dilution/volume	Sample Put in Wet Sieve		FS Collected	Entering Channel During Sampling	
	Dilution/mls of sample	Sample Volume (gal)	Dilution/volume analyzed (mls)	Sample Put in Wet Sieve	Weight (gm)	FS Collected (pounds)	Entering Channel During Sampling (pounds)	(lbs/MG)
Influent	Dilution/mls of sample 600	Sample Volume (gal) 0.1585	Dilution/volume analyzed (mls)	Sample Put in Wet Sieve	Weight (gm) 6.67	FS Collected (pounds) 0.07	Entering Channel During Sampling (pounds) 86.7	(Ibs/MG) 25.1

A-2 Solids Analysis Bench Sheets

Fixed	Solids -	Sunnyval	e WPCP									
	Fix	ed Solids Samp	ole Weight (grams)] [Fixed	Solids Sample	Percent Retained		
		Sample Date	16-Jul-13			Sample Date 16-Jul-13						
Micron	US Sieve	Influent	Primary Sludge	Dewatered Gri	avg.		Micron	US Sieve	Influent	Primary Sludge	Dewatered Grit	avg.
6300	1/4	0.187	0.029	0.351	0.189] [6300	1/4	0.46	0.20	2.48	0.82
3180	1/8	0.807	0.127	1.021	0.652		3180	1/8	1.97	0.91	7.21	2.83
1680	#12	4.388	0.428	1.370	2.062	1 1	1680	#12	10.72	3.06	9.68	8.95
841	#20	13.686	0.754	1.964	5.468	1	841	#20	33.43	5.39	13.87	23.74
297	#50	18.664	2.920	5.651	9.078		297	#50	45.59	20.85	39.91	39.41
210	#70	1.472	1.837	1.883	1.731	1 1	210	#70	3.60	13.12	13.30	7.51
149	#100	0.795	2.938	1.113	1.615	1	149	#100	1.94	20.98	7.86	7.01
105	#140	0.571	2.775	0.570	1.306	1 1	105	#140	1.39	19.82	4.03	5.67
74	#200	0.318	1.833	0.175	0.775	1 1	74	#200	0.78	13.08	1.23	3.36
53	#270	0.052	0.365	0.062	0.160		53	#270	0.13	2.60	0.44	0.69
<53	pan	0.049	0.058	0.057	0.054		<53	pan	0.12	0.41	0.40	0.24
Tota	IFS Weight	40.99	14.06	14.22	23.09		Total (%	6) minus pan	100.00	100.00	100.00	#####

	Fixed Solids Sample Cumulative %>										
		Sample Date	16-Jul-13								
Micron	US Sieve	Influent	Primary Sludge	Dewatered Grit	avg.						
53	#270	100	100	100	100						
74	#200	99.87	97.40	99.56	99.31						
105	#140	99.10	84.31	98.33	95.94						
149	#100	97.70	64.49	94.30	90.28						
210	#70	95.76	43.52	86.44	83.26						
297	#50	92.17	30.40	73.14	75.75						
841	#20	46.58	9.55	33.23	36.34						
1680	#12	13.15	4.17	19.36	12.60						
3180	1/8	2.43	1.11	9.68	3.65						
6300	1/4	0.46	0.20	2.48	0.82						

A-2 Solids Analysis Bench Sheets

ixed	Solids -	Sunnyval	le WPCP		
	Fix	ed Solids Samp	ple Weight (grams))	
		Sample Date	17-Jul-13		
cron	US Sieve	Influent	Primary Sludge	Dewatered Grit	avg.
6300	1/4	0.029	0.101	0.154	0.094
3180	1/8	0.510	0.173	0.572	0.418
1680	#12	1.117	0.365	0.910	0.797
841	#20	1.817	0.553	1.313	1.228
297	#50	4.733	2.233	5.650	4.205
210	#70	0.571	1.756	1.926	1.418
149	#100	0.478	1.969	1.086	1.177
105	#140	0.416	3.787	0.745	1.649
74	#200	0.343	1.265	0.255	0.621
53	#270	0.103	0.353	0.070	0.175
<53	pan	0.048	0.089	0.066	0.067
Total	IFS Weight	10.16	12.64	12.74	11.85

	Fixed Solids Sample Cumulative %>											
	Sample Site 17-Jul-13											
Micron	US Sieve	Influent	Primary Sludge	Dewatered Grit	avg.							
53	#270	100	100	100	100							
74	#200	98.99	97.19	99.45	98.52							
105	#140	95.59	87.11	97.44	93.25							
149	#100	91.48	56.95	91.57	79.25							
210	#70	86.76	41.27	83.00	69.26							
297	#50	81.12	27.28	67.81	57.22							
841	#20	34.33	9.49	23.25	21.53							
1680	#12	16.37	5.09	12.90	11.12							
3180	1/8	5.33	2.18	5.72	4.35							
6300	1/4	0.28	0.80	1.21	0.80							

A-2 Solids Analysis Bench Sheets

Fixed	Solids -	Sunnyva	le WPCP								
	Fix	ed Solids Sam	ple Weight (grams)			Fixed	Solids Sample	Percent Retained		
		Sample Date	18-Jul-13					Sample Site	18-Jul-13		
Micron	US Sieve	Influent	Primary Sludge	Dewatered Grit	avg.	Micron	US Sieve	Influent	Primary Sludge	Dewatered Grit	avg.
6300	1/4	0.064	0.165	0.243	0.157	6300	1/4	0.97	1.38	2.35	1.63
3180	1/8	0.272	0.372	0.454	0.366	3180	1/8	4.10	3.11	4.38	3.79
1680	#12	0.508	0.486	1.022	0.672	1680	#12	7.68	4.06	9.85	6.96
841	#20	0.707	0.506	1.789	1.001	841	#20	10.68	4.23	17.25	10.37
297	#50	2.520	2.817	4.862	3.400	297	#50	38.08	23.56	46.89	35.23
210	#70	0.686	1.837	0.994	1.172	210	#70	10.37	15.36	9.59	12.15
149	#100	0.607	1.493	0.528	0.876	149	#100	9.16	12.48	5.09	9.07
105	#140	0.734	2.880	0.300	1.305	105	#140	11.09	24.09	2.90	13.52
74	#200	0.417	1.064	0.118	0.533	74	#200	6.30	8.90	1.13	5.52
53	#270	0.104	0.338	0.060	0.168	53	#270	1.58	2.83	0.58	1.74
<53	pan	0.054	0.081	0.043	0.059	<53	pan	0.81	0.68	0.41	0.61
Tota	I FS Weight	6.67	12.04	10.41	9.71	Total ((%) minus pan	100.00	100.00	100.00	100.00

	Fixed Solids Sample Cumulative %>											
	Sample Site 18-Jul-13											
Micron	US Sieve	Influent	Primary Sludge	ewatered Gr	avg.							
53	#270	100	100	100	100							
74	#200	98.42	97.17	99.42	98.26							
105	#140	92.13	88.27	98.28	92.74							
149	#100	81.04	64.19	95.39	79.22							
210	#70	71.87	51.70	90.30	70.14							
297	#50	61.51	36.34	80.72	57.99							
841	#20	23.43	12.78	33.83	22.76							
1680	#12	12.76	8.55	16.58	12.39							
3180	1/8	5.07	4.49	6.72	5.42							
6300	1/4	0.97	1.38	2.35	1.63							

Influent								
		16-Jul-13		17-Jul-13		18-Jul-13		
Micron	US Sieve	%	lbs/MG	%	lbs/MG	%	lbs/MG	
6300	0.25	0.457	0.827	0.282	0.115	0.972	0.244	
3180	0.125	1.972	3.569	5.044	2.053	4.103	1.030	
1680	#12	10.718	19.403	11.042	4.494	7.682	1.928	
841	#20	33.430	60.517	17.963	7.311	10.677	2.680	
297	#50	45.589	82.528	46.789	19.043	38.076	9.557	
210	#70	3.595	6.508	5.642	2.296	10.366	2.602	
149	#100	1.942	3.516	4.721	1.921	9.165	2.300	
105	#140	1.394	2.524	4.110	1.673	11.087	2.783	
74	#200	0.776	1.404	3.394	1.381	6.297	1.580	
53	#270	0.127	0.230	1.013	0.412	1.578	0.396	
<53	pan	0.120	0.217	0.472	0.192	0.808	0.203	
	Total (lbs)	181.027	181.027	40.700	40.700	25.100	25.100	
Primary Slud	lge							
		16-Jul-13		17-Jul-13		18-Jul-13		
Micron	US Sieve	%	lbs/MG	%	lbs/MG	%	lbs/MG	

	A-3	Fractional	Grit (Concentration	Calculation	Bench Sheet
--	-----	------------	--------	---------------	-------------	--------------------

Primary Slud	lge						
		16-Jul-13		17-Jul-13		18-Jul-13	
Micron	US Sieve	%	lbs/MG	%	lbs/MG	%	lbs/MG
6300	0.25	0.203	2.524	0.802	8.944	1.378	14.634
3180	0.125	0.907	11.248	1.380	15.384	3.112	33.041
1680	#12	3.055	37.897	2.906	32.402	4.061	43.120
841	#20	5.386	66.805	4.406	49.128	4.232	44.940
297	#50	20.849	258.610	17.787	198.340	23.557	250.130
210	#70	13.118	162.721	13.990	156.007	15.362	163.110
149	#100	20.976	260.187	15.682	174.873	12.483	132.546
105	#140	19.817	245.804	30.162	336.334	24.087	255.751
74	#200	13.084	162.296	10.077	112.369	8.901	94.506
53	#270	2.605	32.309	2.809	31.319	2.827	30.022
<53	pan	0.411	5.092	0.708	7.896	0.677	7.193
	Total (lbs)	1240.400	1240.400	1115.100	1115.100	1061.800	1061.800

Dewatered G	rit						
		16-Jul-13		17-Jul-13		18-Jul-13	
Micron	US Sieve	%	pounds	%	pounds	%	pounds
6300	0.25	2.475	0.647	1.211	0.225	2.346	0.316
3180	0.125	7.208	1.884	4.508	0.838	4.378	0.589
1680	#12	9.677	2.530	7.177	1.335	9.851	1.325
841	#20	13.873	3.626	10.354	1.926	17.253	2.321
297	#50	39.910	10.433	44.562	8.289	46.886	6.306
210	#70	13.295	3.475	15.193	2.826	9.585	1.289
149	#100	7.862	2.055	8.564	1.593	5.087	0.684
105	#140	4.028	1.053	5.874	1.093	2.896	0.390
74	#200	1.234	0.323	2.008	0.374	1.134	0.153
53	#270	0.437	0.114	0.549	0.102	0.582	0.078
<53	pan	0.400	0.104	0.517	0.096	0.415	0.056
	Total (lbs)	26.140	26.140	18.600	18.600	13.450	13.450

1-4 SE	S Data Ar	laiysis								
				Sur	nyvale	WPCF	P - Inf	luent -	July 16, 2	2013
	fractional	sed								vol
sed	volume,	time,	sed h,	sed vel,	SES,			SES,	SES,	frac,
vol, cc	%	sec	cm	cm/s	d1 µ	NR1	NR2	d2 µ	μ	%≥
	50M, 300µ									
0.5	11	4.84		1.08E+01	592.0		64.1		592.0	11
1.0	21	5.54		9.28E+00	511.5		47.5		511.5	21
1.5	32	6.51	50.7	7.79E+00	438.1		34.1		438.1	32
2.0	43	10.20	50.2	4.92E+00	304.6		15.0		304.6	43
2.5	53	16.26		3.06E+00	219.7	6.7			219.7	
3.0	64	21.47		2.30E+00	183.3	4.2			183.3	64
3.5	74	28.17		1.74E+00	155.0	2.7			155.0	74
4.0	85	33.89		1.43E+00	138.6	2.0			138.6	85
4.5	96	47.29	48.3	1.02E+00	114.4	1.2	1.2	114.4	114.4	96
4.7	100	63.23	48.2	7.62E-01	97.3	0.7	0.7	97.3	97.3	100
50M - 7	70M, 200µ	- 300 u								
0.50		11.35	52.4	4.62E+00	291.0	13.4	13.4	291.0	291.0	22
1.0		15.10	51.4	3.41E+00	235.8	8.0		235.8	235.8	44
1.5		32.66	50.7	1.55E+00	145.2	2.3		145.2	145.2	67
2.0		68.80	50.2	7.29E-01	95.1	0.7		95.1	95.1	89
2.3	100		49.9	5.32E-01	80.2	0.4		80.2	80.2	100
70M 1	100M, 150µ	200								
0.20	-	16.78	53.4	3.18E+00	225.6	7.2	7.2	225.6	225.6	22
0.5		22.76	52.4	2.30E+00	183.7	4.2			183.7	56
0.7		32.42	52.0	1.60E+00	147.8	2.4			147.8	78
0.9		55.35	51.6	9.32E-01	108.7	1.0			108.7	100
	140M, 100									
0.20		28.97	53.4	1.84E+00	160.6	3.0			160.6	33
0.4		37.04	52.7	1.42E+00	138.0	2.0		138.0	138.0	67
0.6	100	61.20	52.2	8.53E-01	103.5	0.9	0.9	103.5	103.5	100
140M -	200M, 75µ	100 <u>н</u>								
0.10	25	39.61	54.0	1.36E+00	134.6	1.8	1.8	134.6	134.6	25
0.2	50	48.22	53.4	1.11E+00	119.7	1.3	1.3	119.7	119.7	50
0.3	75	67.14	53.0	7.90E-01	99.3	0.8	0.8	99.3	99.3	75
0.4	100	95.97	52.7	5.49E-01	81.6	0.4	0.4	81.6	81.6	100
200M	270M, 50µ	. 75.								
0.01		52.56	55.2	1.05E+00	116.2	1.2	1.2	116.2	116.2	10
0.01		101.49	54.5	5.37E-01	80.6	0.4		80.6	80.6	50
0.05		119.34	54.0	4.53E-01	73.6	0.4		73.6	73.6	100

				Sunnyvale		- i iiiia	y On	luge -	ouly 10, /	2010
	fractional	sed								vol
sed vol.	volume,	time,	sed h,	sed vel,	SES,			SES,	SES,	frac,
cc	%	sec	cm	cm/s	d1 µ	NR1	NR2	d2 µ	μ.	%≥
	0M, 300µ		0	01110	arp			an b	P	
0.5	9	16.77	52.4	3.13E+00	222.9	7.0	70	222.9	222.9	9
1.0	18	19.64	51.4	2.62E+00	199.0	5.2	5.2	199.0	199.0	
1.5	27	21.91		2.32E+00	184.3	4.3			184.3	
2.0	36	24.30		2.07E+00	171.8	3.5		171.8	171.8	
2.5	45	26.75	49.7	1.86E+00	161.3	3.0	3.0	161.3	161.3	
3.0	55	29.53			151.4	2.5			151.4	
								142.9	151.4	
3.5	64 73	32.36 37.14			142.9	2.2	2.2			
4.0				1.31E+00	131.5	1.7 1.3		131.5	131.5	
4.5	82	44.81		1.08E+00	117.9				117.9	
5.0	91	51.63		9.30E-01	108.6	1.0	1.0	108.6	108.6	
5.5	100	68.29	47.8	6.99E-01	92.9	0.6	0.6	92.9	92.9	100
50M - 70	0 <mark>М, 200</mark> µ	<u> 300</u> μ								
0.50	11	13.77	52.4	3.81E+00	254.2	9.7	9.7	254.2	254.2	11
1.00	22	18.68	51.4	2.75E+00	205.4	5.7	5.7		205.4	22
1.50	33	23.58		2.15E+00	176.2	3.8	3.8	176.2	176.2	33
2.00	44	29.52		1.70E+00	153.0	2.6		153.0	153.0	
2.50	56	39.91		1.25E+00	127.9	1.6	1.6	127.9	127.9	
3.00	67	48.45		1.02E+00	114.1	1.2	1.2	114.1	114.1	67
3.50	78	61.16		8.00E-01	100.0	0.8	0.8	100.0	100.0	78
4.00	89	75.51		6.44E-01	88.8	0.6		88.8	88.8	
4.50	100	92.89		5.20E-01	79.2	0.4	0.4	79.2	79.2	
	<u>00M, 150µ</u>		50.4	0.005.00	007.0			007.0	007.0	
0.50	11	16.22	52.4	3.23E+00	227.8	7.4		227.8	227.8	
1.00	21	19.12	51.4	2.69E+00	202.4	5.4		202.4	202.4	
1.50	32	22.80	50.7	2.23E+00	179.8	4.0	4.0		179.8	
2.00	43	27.40	50.2	1.83E+00	159.9	2.9			159.9	
2.50	53	33.99	49.7	1.46E+00	140.2	2.1	2.1	140.2	140.2	
3.00	64	43.35	49.3	1.14E+00	121.5	1.4	1.4	121.5	121.5	
3.50	74	54.43	48.9	8.99E-01	106.6	1.0	1.0	106.6	106.6	74
4.00	85	69.31	48.6	7.01E-01	93.0	0.7	0.7	93.0	93.0	
4.50	96	89.89	48.3	5.37E-01	80.6	0.4	0.4	80.6	80.6	96
4.70	100	107.97	48.2	4.46E-01	73.1	0.3	0.3	73.1	73.1	100
100M - 1	140M, 100	ա 150ս								
0.50	17	18.63	52.4	2.81E+00	208.2	5.9	5.9	208.2	208.2	17
1.00	33	24.32	51.4	2.11E+00	174.3	3.7	3.7	174.3	174.3	
1.50	50	29.94	50.7	1.69E+00	152.7	2.6		152.7	152.7	50
2.00	67	37.80	50.2	1.33E+00	132.6	1.8		132.6	132.6	
2.50	83	48.40	49.7	1.03E+00	114.7	1.2		114.7	114.7	
3.00	100	76.40	49.3		89.0	0.6		89.0	89.0	
	<u>200М, 75µ</u> 10	- 100µ 26.07	53.4	2.055.00	171 4	25	25	171.1	171.1	
0.20	10			2.05E+00	171.1	3.5				10
0.50	25	32.02	52.4	1.64E+00	149.7	2.5			149.7	
0.70	35	38.86	52.0	1.34E+00	133.2	1.8	1.8		133.2	
1.00	50	46.32	51.4	1.11E+00	119.8	1.3			119.8	
1.50	75	63.38	50.7	8.01E-01	100.0	0.8		100.0	100.0	7
2.00	100	105.22	50.2	4.77E-01	75.7	0.4	0.4	75.7	75.7	10
200M - 2	270M, 50µ	. <mark>75</mark> μ								
0.100	25	53.53	54.0	1.01E+00	113.6	1.1	1.1	113.6	113.6	2
0.00	50	77.83	53.4	6.87E-01	92.0	0.6	0.6	92.0	92.0	50
0.20										
0.20	75	110.47	53.0	4.80E-01	75.9	0.4	0.4	75.9	75.9	75

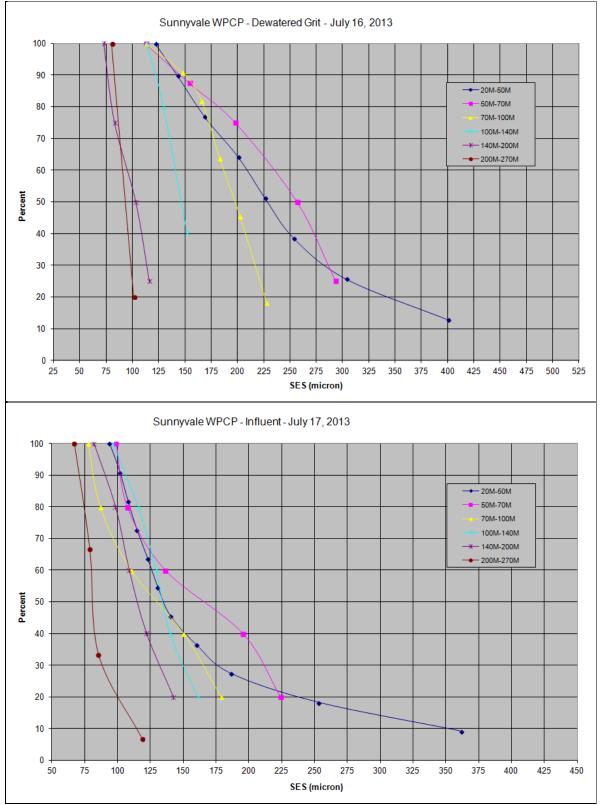
-4 OLC	S Data An	aiysis	~		NDOD -			0.7	1.1.40	0040
			S	unnyvale \	NPCP - L	Dewa	terec	I Grit -	July 16, 2	2013
	for all and									
	fractional	sed			050 44			050	050	vol
sed vol,	volume,	time,	sed h,	sed vel,	SES, d1	ND4		SES,	SES,	frac,
CC	%	Sec	cm	cm/s	μ	NR1	NR2	d2 µ	μ	%≥
	<u>ом, зоор -</u>		50.4	7.005.00	400.2	00.0	00.0	400.2	400.2	40
0.50	13	7.49		7.00E+00	400.3		28.0 14.9			13
1.00	26	10.50 13.35	51.4 50.7	4.90E+00 3.80E+00	303.7					26
1.50	38	15.35	50.7		253.9	9.6		253.9 226.1		38 51
2.00	51 64	18.69		3.20E+00	226.1	7.2 5.3			226.1 200.9	
2.50	77		49.7	2.66E+00	200.9	3.4	3.4			64 77
3.00	90	24.61		2.00E+00	168.7	2.2				90
3.50		32.26		1.52E+00	143.2					
3.90	100	42.62	48.7	1.14E+00	121.7	1.4	1.4	121.7	121.7	100
50M 7	0M, 200µ -	300								
0.50	25	11.23	52.4	4.67E+00	293.3	13.7	13.7	293.3	293.3	25
1.0	50	13.32	51.4	3.86E+00	256.6	9.9				50
1.5	75	19.54		2.60E+00	197.9	5.1	5.1			75
1.8	88	29.29		1.72E+00	154.2	2.7				88
2.0	100	50.53	50.2	9.93E-01	112.6	1.1	1.1	112.6	112.6	100
2.0		00.00	00.2	0.002 01	112.0			112.0	112.0	
70M - 1	00M, 150µ	- 200µ								
0.20	18	16.52	53.4	3.23E+00	227.9	7.4	7.4	227.9	227.9	18
0.50	45	19.47	52.4	2.69E+00	202.5	5.5		202.5		45
0.70	64	22.65	52.0	2.29E+00	183.2	4.2				64
0.90	82	26.48	51.6	1.95E+00	165.9	3.2				82
1.00	91	32.22	51.4	1.60E+00	147.5	2.4	2.4	147.5	147.5	91
1.10	100	51.55	51.3	9.95E-01	112.7	1.1	1.1	112.7	112.7	100
100M - 1	140M, 100	<mark>ս - 150</mark> ր	•							
0.20	40	31.77	53.4	1.68E+00	152.1	2.6	2.6	152.1	152.1	40
0.40	80	41.29	52.7	1.28E+00	129.7	1.7	1.7	129.7	129.7	80
0.50	100	51.86	52.4	1.01E+00	113.7	1.1	1.1	113.7	113.7	100
140M - 1	<u>200М, 75</u> µ	<u>- 100</u> μ								
0.05	25	52.02	54.5	1.05E+00	116.0	1.2			116.0	25
0.10	50	63.62	54.0	8.49E-01	103.3	0.9		103.3	103.3	50
0.15	75	94.29	53.7	5.69E-01	83.2	0.5		83.2	83.2	75
0.20	100	120.22	53.4	4.44E-01	72.9	0.3	0.3	72.9	72.9	100
	<u>270М, 50</u> µ									
0.01	20	67.16	55.2	8.22E-01	101.5	0.8			101.5	20
0.05	100	102.26	54.5	5.33E-01	80.3	0.4	0.4	80.3	80.3	100

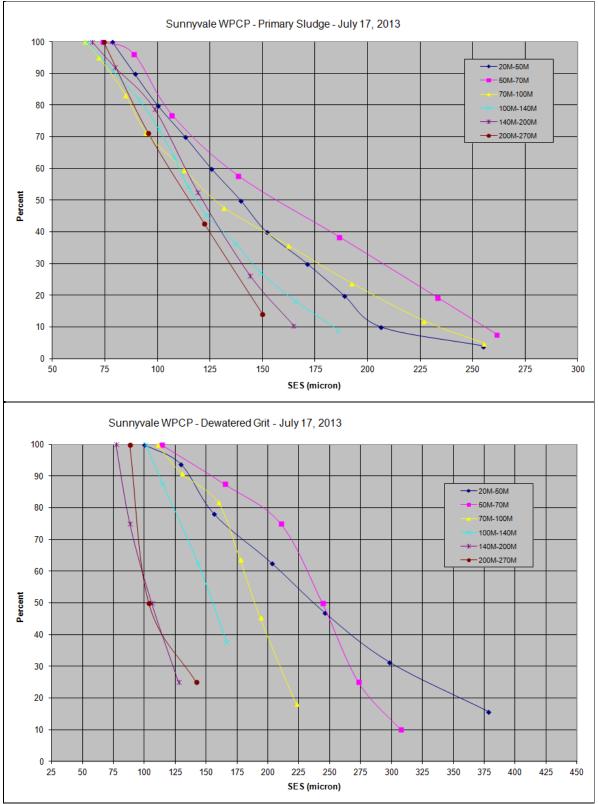
	S Dala Al	1019313							1 1 47	0040
				Sur	nyvale	WPCF	' - Inf	luent -	July 17, 2	2013
	fractional	sed								vol
sed	volume,	time,	sed h,	sed vel,	SES,			SES,	SES,	frac.
vol, cc	%	sec		cm/s	d1μ	NR1	NR2	d2 μ		nac, %≥
	, ом, 300µ		cm	CIII/S	uιμ	DINT	DICZ	uz µ	μ	/0~
0.5	9	8.50	52.4	6.17E+00	361.6	22.3	22.3	361.6	361.6	9
1.0	18	13.61	51.4	3.78E+00	252.9	9.6		252.9		
1.5	27	21.52	50.7	2.36E+00	186.3	4.4	4.4			
2.0	36	27.40	50.7	1.83E+00	159.9	2.9				
2.5	45	34.02	49.7	1.46E+00	140.1	2.0	2.0		140.1	45
3.0	45	38.16	49.7	1.29E+00	130.6	1.7	1.7			
3.5	64	42.24	49.9	1.16E+00	122.7	1.4	1.4			
4.0	73	42.24	48.6	1.02E+00	114.6	1.4	1.4			
4.0	82	52.67	48.3	9.17E-01	107.7	1.2	1.2	107.7		82
5.0	91	58.20	48.0	8.25E-01	107.7	0.8	0.8			91
5.5	100	67.10	40.0	7.12E-01	93.8	0.0	0.0	93.8	93.8	100
0.0	100	67.10	41.0	7.12E-01	93.0	0.7	0.7	93.0	93.0	100
50M - 7	′0M, 200µ	- <u>300</u> μ								
0.20		16.93	53.4	3.16E+00	224.3	7.1	7.1	224.3	224.3	20
0.4	40	20.68	52.7	2.55E+00	195.6	5.0	5.0			
0.6		37.46	52.2	1.39E+00	136.3	1.9	1.9			
0.8		56.89	51.8	9.10E-01	107.3	1.0	1.0	107.3		
1.0		65.68	51.4	7.83E-01	98.8	0.8	0.8	98.8	98.8	100
	00M, 150µ									
0.20		24.20	53.4	2.21E+00	179.0	4.0	4.0			
0.4		31.96	52.7	1.65E+00	150.3	2.5	2.5			
0.6		54.36	52.2	9.60E-01	110.5	1.1	1.1			60
0.8		83.56	51.8	6.20E-01	87.0	0.5	0.5	87.0		80
1.0	100	102.42	51.4	5.02E-01	77.8	0.4	0.4	77.8	77.8	100
10014	14014 100	150	-							
	140M, 100	29.07	_	1.905.00	101.2	2.0	2.0	101.2	101.2	20
0.10			54.0 53.4	1.86E+00	161.3	3.0 2.0	3.0 2.0			20 40
0.2		36.56	53.0	1.46E+00 1.27E+00	140.1 129.5	2.0		129.5	140.1	60
0.5		41.64 50.43	52.7	1.05E+00	129.5			129.5		
0.4		69.87	52.7	7.50E-01	96.5	0.7		96.5	96.5	100
0.5	100	05.07	32.4	1.502-01	30.5	0.7	0.7	30.5	50.5	100
140M -	200M, 75µ	- 100u								
0.10		35.90	54.0	1.50E+00	142.5	2.1	2.1	142.5	142.5	20
0.2		46.62	53.4	1.15E+00	122.0	1.4	1.4			
0.3		56.85	53.0	9.33E-01	108.8	1.0	1.0			
0.4		67.95	52.7	7.76E-01	98.3	0.8	0.8	98.3		
0.5		94.82	52.4	5.53E-01	81.9	0.5	0.5	81.9	81.9	
200M -	270M, 50µ	75 <u>µ</u>								
0.01	7	50.56	55.2	1.09E+00	118.7	1.3	1.3	118.7	118.7	7
0.05	33	91.12	54.5	5.98E-01	85.4	0.5	0.5	85.4	85.4	33
0.10	67	105.10	54.0	5.14E-01	78.8	0.4	0.4	78.8	78.8	67
0.15		141.81	53.7	3.79E-01	67.0	0.3	0.3	67.0	67.0	100

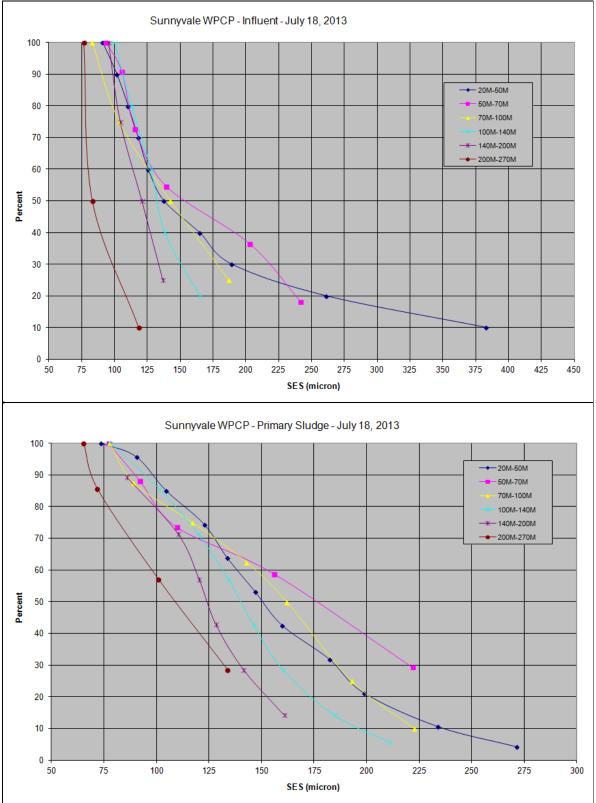
										<u> </u>
	fractional	sed						050	050	vol
sed vol,		time,	sed h,	sed vel,	SES,			SES,	SES,	frac,
сс	%	sec	cm	cm/s	d1 µ	NR1	NR2	d2 µ	μ	%≥
) <u>М, 300</u> µ		50.4							
0.2	4	13.99		3.82E+00	254.7	9.7	9.7		254.7	
0.5	10	18.92		2.77E+00	206.2	5.7	5.7		206.2	
1.0	20	21.39		2.40E+00	188.6	4.5	4.5		188.6	
1.5	30	24.76		2.05E+00	171.0	3.5			171.0	
2.0	40	29.90		1.68E+00	151.9	2.5			151.9	
2.5	50	34.30		1.45E+00	139.4	2.0			139.4	
3.0	60	40.87		1.21E+00	125.6	1.5	1.5		125.6	
3.5	70	48.86		1.00E+00	113.1	1.1	1.1		113.1	
4.0	80	60.72		8.01E-01	100.0	0.8	0.8		100.0	
4.5	90	74.72	48.3	6.46E-01	89.0	0.6			89.0	
5.0	100	94.05	48.0	5.11E-01	78.5	0.4	0.4	78.5	78.5	100
) <u>М, 200</u> µ -									
0.20	8	13.47	53.4	3.97E+00	261.4			261.4	261.4	
0.50	19	15.63		3.35E+00	233.4	7.8		233.4	233.4	
1.00	38	21.80		2.36E+00	186.4	4.4			186.4	
1.50	58	35.43		1.43E+00	138.5	2.0	2.0		138.5	
2.00	77	55.51		9.04E-01	106.9	1.0	1.0		106.9	
2.50	96	77.50		6.41E-01	88.7	0.6	0.6		88.7	
2.60	100	108.51	49.6	4.57E-01	74.0	0.3	0.3	74.0	74.0	100
	<u>ром, 150 µ</u>									
0.20	5	13.94	53.4	3.83E+00	255.4	9.8		255.4	255.4	
0.50	12	16.33	52.4	3.21E+00	226.8	7.3		226.8	226.8	
1.00	24	20.76	51.4	2.48E+00	192.2	4.8	4.8		192.2	
1.50	36	27.08	50.7	1.87E+00	162.1	3.0	3.0		162.1	
2.00	48	38.28	50.2	1.31E+00	131.6	1.7	1.7		131.6	
2.50	60	50.00	49.7	9.94E-01	112.7	1.1	1.1		112.7	
3.00	71	68.46	49.3	7.20E-01	94.4	0.7	0.7		94.4	
3.50	83	83.44	48.9	5.87E-01	84.5	0.5	0.5		84.5	
4.00	95	112.49	48.6	4.32E-01	71.8	0.3			71.8	
4.20	100	133.41	48.5	3.63E-01	65.6	0.2	0.2	65.6	65.6	100
40000		450								
	140M, 100			0.045.00	405.7			405.7	405.7	
0.50	9	22.36	52.4	2.34E+00	185.7	4.4	4.4		185.7	
1.00	18	26.50	51.4	1.94E+00	165.5	3.2	3.2		165.5	
1.50	27	31.24	50.7	1.62E+00	149.0	2.4	2.4		149.0	
2.00	36	35.62	50.2	1.41E+00	137.2	1.9	1.9		137.2	
2.50	45	42.67	49.7	1.17E+00	123.1	1.4	1.4		123.1	
3.00	55	48.37	49.3	1.02E+00	114.2	1.2	1.2		114.2	
3.50	64	53.12	48.9	9.21E-01	108.0	1.0	1.0		108.0	
4.00	73	60.31	48.6	8.06E-01	100.4	0.8			100.4	
4.50	82	71.61	48.3	6.74E-01	91.1	0.6			91.1	
5.00	91	93.48	48.0	5.14E-01	78.7	0.4			78.7	
5.50	100	129.42	47.8	3.69E-01	66.1	0.2	0.2	66.1	66.1	100
<u>140M - 2</u>	<u>200М, 75</u> µ	<u>- 100</u> μ								
0.20	11	27.81	53.4	1.92E+00	164.5	3.2	3.2		164.5	11
0.50	26	34.28	52.4	1.53E+00	143.8	2.2	2.2	143.8	143.8	20
1.00	53	46.89	51.4	1.10E+00	119.0	1.3	1.3	119.0	119.0	53
1.50	79	65.40	50.7	7.76E-01	98.3	0.8			98.3	79
1.75	92	96.64	50.4	5.22E-01	79.4	0.4			79.4	
1.90	100	126.42	50.3	3.98E-01	68.8	0.3			68.8	
200M - 2	270M, 50µ	- 75u								
0.100	14	32.96	54.0	1.64E+00	149.8	2.5	2.5	149.8	149.8	14
0.30	43	46.21	53.0	1.15E+00	122.1	1.4	1.4		122.1	
0.50	71	71.31	52.4	7.35E-01	95.5	0.7	0.7		95.5	
0.70	100	112.38	52.0	4.62E-01	74.5	0.3			74.5	
0.10	100	112.00	32.0	4.022-01	14.0	0.5	0.0	14.0	14.0	10

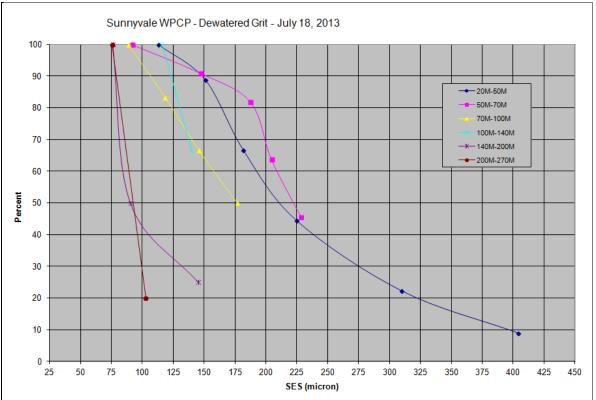
	S Data An	alysis								
			S	unnyvale \	NPCP - [Dewa	terec	Grit -	July 17	, 2013
	fractional	sed								vol
sed vol,	volume,	time,	sed h,	sed vel,	SES, d1			SES,	SES	, frac,
сс	%	sec	cm	cm/s	μ	NR1	NR2	d2 µ	μ	%≥
20M - 50)M, 300µ -	820µ								
0.50	16	8.02	52.4	6.54E+00	378.7	24.8	24.8	378.7	378.	7 16
1.00	31	10.75	51.4	4.78E+00	298.5		14.3			
1.50	47	13.98	50.7	3.63E+00	246.1	8.9			246.	
2.00	63	18.53		2.71E+00	203.2	5.5				
2.50	78	28.22		1.76E+00	156.3	2.8				
3.00	94	38.57		1.28E+00	129.8	1.7	1.7			
3.20	100	61.66	49.2	7.97E-01	99.8	0.8		99.8		
50M - 70)M, 200µ -	300 u								
0.20	10	10.73	53.4	4.98E+00	307.4	15.3	15.3	307.4	307.	4 10
0.5	25	12.41	52.4	4.22E+00	273.1		11.5		273.	
1.0	50	14.35	51.4	3.58E+00	244.0	8.7		244.0		
1.5	75	17.74		2.86E+00	210.4	6.0		210.4		
1.8	88	26.12		1.93E+00	165.0	3.2				
2.0	100	49.62		1.01E+00	113.7	1.2				
70M - 10	00M, 150µ	- 200µ								
0.20	18	17.09	53.4	3.13E+00	222.9	7.0	7.0	222.9	222.	9 18
0.50	45	20.87	52.4	2.51E+00	193.8	4.9				
0.70	64	23.84	52.0	2.18E+00	177.6	3.9				
0.90	82	28.23	51.6	1.83E+00	159.7	2.9				
1.00	91	39.99	51.4	1.29E+00	130.2	1.7	1.7			
1.10	100	53.56	51.3	9.57E-01	110.3	1.1	1.1			
100M - 1	40M, 100	ւ - 150u								
0.30	38	27.03	53.0	1.96E+00	166.6	3.3	3.3	166.6	166.	6 38
0.50	63	34.49	52.4	1.52E+00	143.3					
0.70	88	50.56	52.0	1.03E+00	114.8	1.2		114.8		
0.80	100	63.32	51.8	8.18E-01	101.2	0.8		101.2		
0.00		00.02		0.102.01		0.0	0.0			
140M - 2	200M, 75µ	- 100 ц								
0.10	25	43.59	54.0	1.24E+00	127.5	1.6	1.6	127.5	127.	5 25
0.20	50	60.23	53.4	8.87E-01	105.8	0.9				
0.30	75	83.38	53.0	6.36E-01	88.3	0.6				
0.40	100	106.55	52.7	4.95E-01	77.2	0.4				
0.40	100	100.00	UL.1	4.00E V1	11.2	vT	vr			
200M . 3	270M, 50µ	. 75								
0.05	25	36.35	54.5	1.50E+00	142.2	2.1	2.1	142.2	142.	2 25
0.05	50	63.36	54.0	8.53E-01	142.2	0.9				
0.10	100	84.50	53.4	6.32E-01	88.0	0.5				
0.20	100	04.50	55.4	0.320-01	00.0	0.0	0.0	00.0	00.	0 100

A-4 SES D	ata Analysis
-----------	--------------


	S Dala Al	laryolo		Sur	nyvale	WPCF	? - Inf	luent	July 18, 3	2013
	fractional	sed		a a di su l	050			050	050	vol
sed	volume,	time,	sed h,	sed vel,	SES,	NDA		SES,	SES,	frac,
vol, cc	%	sec	cm	cm/s	d1 µ	NR1	NR2	d2 µ	μ	%≥
	<u>50М, 300µ</u>		50.4							
0.5	10	7.91	52.4	6.63E+00	382.9			382.9	382.9	10
1.0	20	12.99		3.96E+00	261.1			261.1	261.1	20
1.5	30	21.01	50.7	2.41E+00	189.1	4.6		189.1	189.1	30
2.0	40	26.11		1.92E+00	164.6	3.2			164.6	40
2.5	50	35.16		1.41E+00	137.5	1.9			137.5	50
3.0	60	40.92		1.20E+00	125.5	1.5			125.5	60
3.5	70	45.35	48.9	1.08E+00	117.9	1.3			117.9	
4.0	80	50.87		9.56E-01	110.2	1.1			110.2	
4.5	90	58.58		8.25E-01	101.6	0.8			101.6	
5.0	100	71.52	48.0	6.71E-01	90.9	0.6	0.6	90.9	90.9	100
50M - 7	70M, 200µ	- <u>300</u> µ								
0.20	18	15.11	53.4	3.54E+00	241.8	8.6	8.6	241.8	241.8	18
0.4	36	19.47	52.7	2.71E+00	203.1	5.5	5.5	203.1	203.1	36
0.6	55	36.02	52.2	1.45E+00	139.4	2.0	2.0	139.4	139.4	55
0.8	73	49.80	51.8	1.04E+00	115.5	1.2	1.2	115.5	115.5	73
1.0	91	58.33	51.4	8.82E-01	105.4	0.9	0.9	105.4	105.4	91
1.1	100	72.56	51.3	7.07E-01	93.4	0.7	0.7	93.4	93.4	100
70M - 1	100M, 150µ	. 2000								
0.20	-	22.51	53.4	2.37E+00	187.1	4.4	44	187.1	187.1	25
0.4		35.01	52.7	1.51E+00	142.5	2.1			142.5	50
0.6		61.22	52.2	8.52E-01	103.5	0.9			103.5	75
0.8		91.22	51.8	5.68E-01	83.0	0.5		83.0	83.0	100
		450								
	140M, 100									
0.10		28.00	54.0	1.93E+00	164.9	3.2		164.9	164.9	
0.2		37.41	53.4	1.43E+00	138.3	2.0		138.3	138.3	40
0.3		42.65		1.24E+00	127.7			127.7	127.7	60
0.4		52.80	52.7	9.98E-01	112.9	1.1			112.9	80
0.5	100	65.33	52.4	8.03E-01	100.1	0.8	0.8	100.1	100.1	100
140M -	200M, 75µ	ւ - <mark>100 բ</mark>								
0.10	25	38.67	54.0	1.40E+00	136.5	1.9	1.9	136.5	136.5	25
0.2		47.55	53.4	1.12E+00	120.6	1.4	1.4		120.6	50
0.3		61.31	53.0	8.65E-01	104.3	0.9	0.9		104.3	75
0.4		71.56	52.7	7.36E-01	95.6	0.7		95.6	95.6	100
200M	270M, 50µ	75								
0.01		50.81	55.2	1.09E+00	118.4	1.3	1.3	118.4	118.4	10
0.01		95.65	54.5	5.70E-01	83.2	0.5		83.2	83.2	50
0.05		110.26	54.5	4.90E-01	76.8	0.5		76.8	76.8	100
0.10	100		UT.V		70.0	v.4	v+	10.0	10.0	100


A-4	SES	Data	Anal	ysis
-----	-----	------	------	------


			S	Sunnyvale	WPCP -	- Prima	ry Sli	udge -	July 18,	2013
	fractional	sed								vol
sed vol.	volume,	time,	sed h,	sed vel,	SES,			SES,	SES,	frac,
	%					ND4	NDO		-	
CC		Sec	cm	cm/s	d1 µ	NR1	NR2	d2 µ	μ	%≥
	<u>оМ, 300µ -</u>		50.4	4.405.00	074.0	44.0	44.0	074.0	074.0	
0.2	4	12.78	53.4	4.18E+00	271.2			271.2	271.2	
0.5	11	15.61	52.4	3.36E+00	233.6	7.8		233.6	233.6	
1.0	21	19.71	51.4	2.61E+00	198.5	5.2			198.5	
1.5	32	22.34		2.27E+00	182.1	4.1	4.1		182.1	
2.0	43	27.46	50.2	1.83E+00	159.7	2.9			159.7	
2.5	53	31.36	49.7	1.59E+00	146.9	2.3	2.3	146.9	146.9	53
3.0	64	36.63	49.3	1.35E+00	133.6	1.8	1.8	133.6	133.6	64
3.5	74	42.31		1.16E+00	122.6	1.4			122.6	
4.0	85	56.06		8.67E-01	104.5	0.9			104.5	
4.5	96	72.78		6.64E-01	90.3	0.6			90.3	
4.7	100	106.88		4.51E-01	73.5	0.3			73.5	
4.1	100	100.00	40.2	4.512-01	15.5	0.5	0.5	15.5	13.5	100
50M 7	0M, 200µ -	200								
			CO 4	2 405 .00	004.0	C 0	C 0	004.0	004.0	
0.50	29	16.89		3.10E+00	221.8	6.9		221.8	221.8	
1.00	59	29.30		1.76E+00	155.9	2.7			155.9	
1.25	74	53.88		9.48E-01	109.7	1.0			109.7	
1.50	88	74.01		6.86E-01	91.9	0.6			91.9	
1.70	100	102.13	50.5	4.95E-01	77.2	0.4	0.4	77.2	77.2	100
70M - 10	<u>00M, 150</u> ш	<u>- 200µ</u>								
0.20	10	17.11	53.4	3.12E+00	222.7	7.0	7.0	222.7	222.7	10
0.50	25	21.02	52.4	2.49E+00	193.0	4.8	4.8	193.0	193.0	25
1.00	50	27.47	51.4	1.87E+00	162.0	3.0		162.0	162.0	
1.25	63	33.85	51.1	1.51E+00	142.7	2.2			142.7	
1.50	75	47.67	50.7	1.06E+00	117.0	1.2			117.0	
1.75	88	77.80	50.4	6.48E-01	89.2	0.6			89.2	
2.00	100	100.02	50.4	5.02E-01	77.8	0.4			77.8	
2.00	100	100.02	30.2	J.02L-01	11.0	0.4	0.4	11.0	11.0	100
100M	140M, 100	. 150.								
0.20	6	18.66	53.4	2.86E+00	210.6	6.0	6.0	210.6	210.6	6
0.50	14	22.59	52.4	2.32E+00	184.5	4.3		184.5	184.5	
1.00	29	27.98	51.4	1.84E+00	160.3	2.9			160.3	
1.50	43	32.33	50.7	1.57E+00	146.0	2.3			146.0	
2.00	57	37.02	50.2	1.36E+00	134.2	1.8		134.2	134.2	
2.50	71	44.80	49.7	1.11E+00	119.8	1.3		119.8	119.8	
3.00	86	60.28	49.3	8.18E-01	101.2	0.8	0.8	101.2	101.2	
3.50	100	96.88	48.9	5.05E-01	78.0	0.4	0.4	78.0	78.0	100
140M - 1	200M, 75µ	- 100µ								
0.20	14	28.96	53.4	1.85E+00	160.6	3.0	3.0	160.6	160.6	14
0.40	29	35.53	52.7	1.48E+00	141.3	2.1	2.1		141.3	
0.60	43	41.71	52.2	1.25E+00	128.2	1.6	1.6		128.2	
0.80	57	46.39	51.8	1.12E+00	120.2	1.3			120.2	
1.00	71	53.90	51.4	9.54E-01	110.1	1.1	1.1		110.1	7
1.25	89	84.65	51.1	6.03E-01	85.8	0.5			85.8	
1.40	100	112.60	50.9	4.52E-01	73.5	0.3	0.3	73.5	73.5	10
	<u>270М, 50µ</u>									
0.200	29	39.63	53.4	1.35E+00	133.8	1.8	1.8	133.8	133.8	2
0.40	57	64.85	52.7	8.13E-01	100.8	0.8	0.8	100.8	100.8	5
0.60	86	121.11	52.2	4.31E-01	71.7	0.3			71.7	
0.70	100	144.40	52.0	3.60E-01	65.3	0.2			65.3	
	100	144.40	JZ.V	0.000-01	00.0	V.2	0.2	00.0	00.0	10


1020	s Data An	aiysis									
			S	unnyvale	WPCP - [Dewa	terec	I Grit -	July 18	3, 2	2013
	fractional	sed									vol
sed vol,	volume,	time,	sed h,	sed vel,	SES, d1			SES,	SE	S,	frac,
сс	%	sec	cm	cm/s	μ	NR1	NR2	d2 µ	μ		%≥
20M - 50	<u>оМ, 300µ -</u>	820µ									
0.20	9	7.54	53.4	7.09E+00	404.4	28.7	28.7	404.4	404	.4	9
0.50	22	10.41	52.4	5.04E+00	309.9	15.6	15.6	309.9	309	.9	22
1.00	44	16.24	51.4	3.17E+00	224.8	7.1	7.1	224.8	224	.8	44
1.50	67	22.41	50.7	2.26E+00	181.7	4.1	4.1	181.7	181	.7	67
2.00	89	30.22	50.2	1.66E+00	150.9	2.5	2.5	150.9	150	.9	89
2.25	100	50.01	49.9	9.99E-01	112.9	1.1	1.1	112.9	112	.9	100
50M - 70	OM, 200μ -	300µ									
0.50	45	16.16	52.4	3.24E+00	228.3	7.4	7.4	228.3	228	.3	45
0.7	64	19.01	52.0	2.73E+00	204.4	5.6	5.6	204.4	204	.4	64
0.9	82	21.66	51.6	2.38E+00	187.5	4.5	4.5	187.5	187	.5	82
1.0	91	32.32	51.4	1.59E+00	147.2	2.3				.2	91
1.1	100	75.31	51.3	6.81E-01	91.6	0.6	0.6	91.6	91	.6	100
70M - 10	00M, 150µ	- 200µ									
0.30	50	24.49	53.0	2.17E+00	176.8	3.8	3.8	176.8	176	.8	50
0.40	67	33.72	52.7	1.56E+00	145.7	2.3	2.3	145.7	145	.7	67
0.50	83	48.19	52.4	1.09E+00	118.5	1.3	1.3	118.5	118	.5	83
0.60	100	81.58	52.2	6.40E-01	88.5	0.6	0.6	88.5	88	.5	100
100M - 1	140M, 100	և - 150µ	L								
0.20	67	36.57	53.4	1.46E+00	140.1	2.0	2.0	140.1	140	.1	67
0.30	100	50.68	53.0	1.05E+00	115.9	1.2	1.2	115.9	115	.9	100
<u>140M - 2</u>	200M, 75µ	- 100µ									
0.05	25	35.15	54.5	1.55E+00	145.0	2.2	2.2	145.0	145	.0	25
0.10	50	81.44	54.0	6.63E-01	90.3	0.6		90.3	90	.3	50
0.20	100	111.15	53.4	4.81E-01	76.0	0.4		76.0		.0	100
200M - 2	270M, 50µ	- 75 ц									
0.01	20	65.53	55.2	8.43E-01	102.8	0.9	0.9	102.8	102	.8	20
0.05	100	115.01	54.5	4.74E-01	75.4	0.4		75.4		.4	100
										-	

Sunnyvale WPCP	? - Influent	- July 16,	2013												
Sieve Size >	1/4	1/8	#12	#20		#50	#70	#100	#140	#200	#270	% To	tal in SES I	Range	
fxd solids fraction	0.46	1.97	10.72	33.43	3	45.59	3.60	1.94	1.39	0.78	0.13				
												SES (micron)	% Percent Retained	Cumulative % Retained	% >
SES Interval												25			100
25-50												50	0.00	0.00	100.00
50-75												75	0.00	0.00	100.00
75-100						2.0	13.0			25.0	73.0	100	1.67	1.67	98.33
100-125					2.0	7.0	13.0	9.0	20.0	33.0	24.0	125	5.07	6.73	93.27
125-150			2.0		7.0	15.0	9.0	14.0	30.0	41.0	3.0	150	10.73	17.46	82.54
150-175		2.0	7.0	1	5.0	10.0	7.0	15.0	37.0	1.0		175	11.43	28.89	71.11
175-200	2.0	7.0	15.0	1	0.0	9.0	6.0	19.0	13.0			200	9.97	38.86	61.14
200-225	7.0	15.0	10.0		9.0	6.0	5.0	21.0				225	7.73	46.59	53.41
225-250	15.0	10.0	9.0		6.0	4.0	8.0	20.0				250	5.74	52.33	47.67
250-275	10.0	9.0	6.0		4.0	4.0	11.0	2.0				275	4.46	56.79	43.21
275-300	9.0	6.0	4.0		4.0	3.0	11.0					300	3.69	60.47	39.53
300-325	6.0	4.0	4.0		3.0	3.0	11.0					325	3.30	63.78	36.22
325-350	4.0	4.0	3.0		3.0	2.0	6.0					350	2.55	66.32	33.68
350-375	4.0	3.0	3.0		2.0	2.0						375	1.98	68.30	31.70
375-400	3.0	3.0	2.0		2.0	2.0						400	1.87	70.17	29.83
400-425	3.0	2.0	2.0		2.0	2.0						425	1.85	72.02	27.98
425-450	2.0	2.0	2.0		2.0	2.0						450	1.84	73.86	26.14
450-475	2.0	2.0	2.0		2.0	3.0						475	2.30	76.16	23.84
475-500	2.0	2.0	2.0		3.0	4.0						500	3.09	79.25	20.75
500-525	2.0	2.0	3.0		4.0	3.0						525	3.07	82.33	17.67
525-550	2.0	3.0	4.0		3.0	3.0						550	2.87	85.19	14.81
550-575	3.0	4.0	3.0		3.0	3.0						575	2.78	87.98	12.02
575-600	4.0	3.0	3.0		3.0	3.0						600	2.77	90.75	9.25
600-625	3.0	3.0	3.0		3.0	3.0						625	2.76	93.51	6.49
625-650	3.0	3.0	3.0		3.0	3.0						650	2.76	96.28	3.72
650-675	3.0	3.0	3.0		3.0	2.0						675	2.31	98.59	1.41
>675	11.0	8.0	5.0		2.0							>675	1.41	100.00	0.00
TOTAL	100.0	100.0	100.0	10	0.0	100.0	100.0	100.0	100.0	100.0	100.0		100.00		

Sunnyvale WPCP	- Primary	y Sludge -	- July 16, 2	2013										-
Sieve Size >	1/4	1/8	#12	#20	#50	#70	#100	#140	#200	#270	% To	tal in SES I	Range	
fxd solids fraction	0.20	0.91	3.06	5.39	20.85	13.12	20.98	19.82	13.08	2.60				
												%		
											SES	Percent	Cumulative	
											(micron)	Retained	% Retained	% >
SES Interval											25			100
25-50											50	0.00	0.00	100.00
50-75							1.0			23.0	75	0.81	0.81	99.19
75-100					4.0	22.0	19.0	7.0	25.0	37.0	100	13.33	14.14	85.86
100-125				4.0	19.0	21.0	18.0	19.0	32.0	28.0	125	19.39	33.52	66.48
125-150			4.0	19.0	21.0	12.0	14.0	22.0	17.0	12.0	150	16.93	50.46	49.54
150-175		4.0	19.0	21.0	23.0	12.0	14.0	19.0	18.0		175	17.17	67.63	32.37
175-200	4.0	19.0	21.0	23.0	15.0	13.0	12.0	13.0	8.0		200	13.03	80.66	19.34
200-225	19.0	21.0	23.0	15.0	10.0	11.0	10.0	11.0			225	9.54	90.21	9.79
225-250	21.0	23.0	15.0	10.0	8.0	9.0	10.0	9.0			250	7.98	98.19	1.81
250-275	23.0	15.0	10.0	8.0			2.0				275	1.34	99.53	0.47
275-300	15.0	10.0	8.0								300	0.37	99.89	0.11
300-325	10.0	8.0									325	0.09	99.98	0.02
>325	8.0										>325	0.02	100.00	0.00
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.00		

Sunnyvale WPCP	- Dewate	ered Grit -	July 16, 2	2013										
Sieve Size >	1/4	1/8	#12	#20	#50	#70	#100	#140	#200	#270	% Tot	tal in SES I	Range	
fxd solids fraction	2.48	7.21	9.68	13.87	39.91	13.30	7.86	4.03	1.23	0.44				
											SES (micron)	% Percent Retained	Cumulative % Retained	% >
SES Interval											25			100
25-50											50	0.00	0.00	100.00
50-75									5.0		75	0.06	0.06	99.94
75-100									46.0	75.0	100	0.90	0.96	99.04
100-125					2.0	4.0	3.0	13.0	46.0	25.0	125	2.77	3.72	96.28
125-150				2.0	11.0	7.0	7.0	43.0	3.0		150	7.92	11.64	88.36
150-175			2.0	11.0	13.0	7.0	18.0	43.0			175	10.99	22.63	77.37
175-200		2.0	11.0	13.0	10.0	8.0	23.0	1.0			200	9.92	32.54	67.46
200-225	2.0	11.0	13.0	10.0	12.0	10.0	28.0				225	11.81	44.35	55.65
225-250	11.0	13.0	10.0	12.0	12.0	11.0	21.0				250	11.74	56.09	43.91
250-275	13.0	10.0	12.0	12.0	8.0	14.0					275	8.92	65.02	34.98
275-300	10.0	12.0	12.0	8.0	5.0	19.0					300	7.91	72.92	27.08
300-325	12.0	12.0	8.0	5.0	4.0	18.0					325	6.62	79.54	20.46
325-350	12.0	8.0	5.0	4.0	4.0	2.0					350	3.77	83.32	16.68
350-375	8.0	5.0	4.0	4.0	4.0						375	3.10	86.41	13.59
375-400	5.0	4.0	4.0	4.0	3.0						400	2.55	88.96	11.04
400-425	4.0	4.0	4.0	3.0	3.0						425	2.39	91.35	8.65
425-450	4.0	4.0	3.0	3.0	3.0						450	2.29	93.64	6.36
450-475	4.0	3.0	3.0	3.0	3.0						475	2.22	95.86	4.14
475-500	3.0	3.0	3.0	3.0	3.0						500	2.19	98.06	1.94
>500	12.0	9.0	6.0	3.0							>500	1.94	100.00	0.00
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.00		

Sieve Size >	1/4	1/8	#12	#20	#50	#70	#100	#140	#200	#270	% To	tal in SES I	Range	
fxd solids fraction	0.28	5.04	11.04	17.96	46.79	5.64	4.72	4.11	3.39	1.01				
											SES (micron)	% Percent Retained	Cumulative % Retained	% >
SES Interval											25			100
25-50											50	0.00	0.00	100.00
50-75										22.0	75	0.22	0.22	99.78
75-100					7.0	34.0	32.0	3.0	22.0	58.0	100	8.16	8.38	91.62
100-125				7.0	32.0	11.0	16.0	29.0	41.0	18.0	125	20.37	28.76	71.24
125-150			7.0	32.0	21.0	8.0	12.0	37.0	24.0	2.0	150	19.72	48.48	51.52
150-175		7.0	32.0	21.0	10.0	9.0	17.0	23.0	13.0		175	15.03	63.51	36.49
175-200	7.0	32.0	21.0	10.0	6.0	18.0	19.0	8.0			200	10.80	74.31	25.69
200-225	32.0	21.0	10.0	6.0	4.0	20.0	4.0				225	6.52	80.83	19.17
225-250	21.0	10.0	6.0	4.0	2.0						250	2.88	83.71	16.29
250-275	10.0	6.0	4.0	2.0	2.0						275	2.07	85.78	14.22
275-300	6.0	4.0	2.0	2.0	2.0						300	1.73	87.51	12.49
300-325	4.0	2.0	2.0	2.0	2.0						325	1.63	89.14	10.86
325-350	2.0	2.0	2.0	2.0	2.0						350	1.62	90.76	9.24
350-375	2.0	2.0	2.0	2.0	2.0						375	1.62	92.38	7.62
375-400	2.0	2.0	2.0	2.0	2.0						400	1.62	94.01	5.99
400-425	2.0	2.0	2.0	2.0	2.0						425	1.62	95.63	4.37
425-450	2.0	2.0	2.0	2.0	2.0						450	1.62	97.25	2.75
450-475	2.0	2.0	2.0	2.0	2.0						475	1.62	98.87	1.13
>475	8.0	6.0	4.0	2.0							>475	1.13	100.00	0.00
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.00		

Sunnyvale WPCP Sieve Size >	1/4	1/8	#12	#20	#50	#70	#100	#140	#200	#270	% To	tal in SES	Pango	
fxd solids fraction	0.80	1.38	2.91	4.41	17.79	13.99	15.68	30.16	10.08	2.81	70 10		Range	
	0.00	1.30	2.31	4.41	11.13	13.33	13.00	30.10	10.00	2.01	SES (micron)	% Percent Retained	Cumulative % Retained	% >
SES Interval											25			100
25-50											50	0.00	0.00	100.00
50-75							8.0	7.0	5.0		75	3.87	3.87	96.13
75-100					20.0	17.0	24.0	20.0	17.0	33.0	100	18.37	22.24	77.76
100-125				20.0	19.0	19.0	17.0	29.0	32.0	27.0	125	22.31	44.56	55.44
125-150			20.0	19.0	19.0	12.0	11.0	17.0	25.0	26.0	150	16.58	61.13	38.87
150-175		20.0	19.0	19.0	14.0	10.0	10.0	14.0	18.0	14.0	175	13.55	74.69	25.31
175-200	20.0	19.0	19.0	14.0	16.0	10.0	9.0	1.0	3.0		200	7.85	82.54	17.46
200-225	19.0	19.0	14.0	16.0	6.0	10.0	9.0	2.0			225	6.01	88.55	11.45
225-250	19.0	14.0	16.0	6.0	2.0	10.0	5.0				250	3.61	92.16	7.84
250-275	14.0	16.0	6.0	2.0	2.0	10.0	5.0				275	3.13	95.29	4.71
275-300	16.0	6.0	2.0	2.0	2.0	2.0	2.0				300	1.31	96.60	3.40
>300	12.0	6.0	4.0	2.0							>300	0.38	96.98	3.02
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0	90.0	100.0	100.0		96.98		

Sunnvvale WPCP - Primary Sludge - July 17, 2013

Sunnyvale WPCP Sieve Size >	1/4	1/8	#12	#20	#50	#70	#100	#140	#200	#270	% To	tal in SES I	Range	
fxd solids fraction	1.21	4.51	7.18	10.35	44.56	15.19	8.56	5.87	2.01	0.55	2010		ungo	
											SES (micron)	% Percent Retained	Cumulative % Retained	% >
SES Interval											25			100
25-50											50	0.00	0.00	100.00
50-75											75	0.00	0.00	100.00
75-100									42.0	44.0	100	1.09	1.09	98.91
100-125					5.0	2.0	7.0	21.0	30.0	22.0	125	5.09	6.17	93.83
125-150				5.0	14.0	6.0	8.0	23.0	28.0	13.0	150	10.34	16.51	83.49
150-175			5.0	14.0	9.0	6.0	19.0	27.0		14.0	175	10.02	26.53	73.47
175-200		5.0	14.0	9.0	8.0	6.0	26.0	28.0		7.0	200	10.55	37.08	62.92
200-225	5.0	14.0	9.0	8.0	9.0	13.0	24.0	1.0			225	10.27	47.35	52.65
225-250	14.0	9.0	8.0	9.0	8.0	21.0	16.0				250	10.21	57.55	42.45
250-275	9.0	8.0	9.0	8.0	7.0	21.0					275	8.25	65.81	34.19
275-300	8.0	9.0	8.0	7.0	7.0	11.0					300	6.59	72.40	27.60
300-325	9.0	8.0	7.0	7.0	5.0	10.0					325	5.44	77.84	22.16
325-350	8.0	7.0	7.0	5.0	5.0	4.0					350	4.27	82.11	17.89
350-375	7.0	7.0	5.0	5.0	5.0						375	3.50	85.62	14.38
375-400	7.0	5.0	5.0	5.0	5.0						400	3.41	89.03	10.97
400-425	5.0	5.0	5.0	5.0	5.0						425	3.39	92.42	7.58
425-450	5.0	5.0	5.0	5.0	5.0						450	3.39	95.81	4.19
450-475	5.0	5.0	5.0	5.0	3.0						475	2.50	98.31	1.69
>475	18.0	13.0	8.0	3.0							>475	1.69	100.00	0.00
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.00		

Sieve Size >	1/4	1/8	#12	#20	#50	#70	#100	#140	#200	#270	% To	tal in SES I	Range	
fxd solids fraction	0.97	4.10	7.68	10.68	38.08	10.37	9.16	11.09	6.30	1.58				
												%		
											SES	Percent	Cumulative	
											(micron)	Retained	% Retained	% >
SES Interval											25			100
25-50											50	0.00	0.00	100.00
50-75											75	0.00	0.00	100.00
75-100					8.0	4.0	22.0		12.0	72.0	100	7.37	7.37	92.63
100-125				8.0	32.0	34.0	18.0	36.0	45.0	24.0	125	25.42	32.78	67.22
125-150			8.0	32.0	15.0	11.0	14.0	34.0	38.0	4.0	150	18.39	51.17	48.83
150-175		8.0	32.0	15.0	11.0	7.0	14.0	17.0	5.0		175	12.78	63.96	36.04
175-200	8.0	32.0	15.0	11.0	6.0	6.0	14.0	13.0			200	9.35	73.31	26.69
200-225	32.0	15.0	11.0	6.0	4.0	11.0	16.0				225	6.54	79.85	20.15
225-250	15.0	11.0	6.0	4.0	3.0	14.0	2.0				250	4.26	84.11	15.89
250-275	11.0	6.0	4.0	3.0	3.0	13.0					275	3.47	87.58	12.42
275-300	6.0	4.0	3.0	3.0	2.0						300	1.53	89.12	10.88
300-325	4.0	3.0	3.0	2.0	2.0						325	1.37	90.48	9.52
325-350	3.0	3.0	2.0	2.0	2.0						350	1.28	91.76	8.24
350-375	3.0	2.0	2.0	2.0	2.0						375	1.24	93.00	7.00
375-400	2.0	2.0	2.0	2.0	2.0						400	1.23	94.23	5.77
400-425	2.0	2.0	2.0	2.0	2.0						425	1.23	95.46	4.54
425-450	2.0	2.0	2.0	2.0	2.0						450	1.23	96.69	3.31
450-475	2.0	2.0	2.0	2.0	2.0						475	1.23	97.93	2.07
475-500	2.0	2.0	2.0	2.0	2.0						500	1.23	99.16	0.84
>500	8.0	6.0	4.0	2.0							>500	0.84	100.00	0.00
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.00		

Sunnyvale WPCF	- Primary	Sludge -	July 18, 2	2013										
Sieve Size >	1/4	1/8	#12	#20	#50	#70	#100	#140	#200	#270	% To	tal in SES I	Range	
fxd solids fraction	1.38	3.11	4.06	4.23	23.56	15.36	12.48	24.09	8.90	2.83				
												%		
											SES	Percent	Cumulative	
											(micron)	Retained	% Retained	% >
SES Interval											25			100
25-50											50	0.00	0.00	100.00
50-75					1.0					18.0	75	0.74	0.74	99.26
75-100				1.0	10.0	20.0	18.0	14.0	21.0	24.0	100	13.64	14.38	85.62
100-125			1.0	10.0	17.0	12.0	11.0	19.0	31.0	22.0	125	15.64	30.02	69.98
125-150		1.0	10.0	17.0	22.0	7.0	14.0	28.0	26.0	21.0	150	18.81	48.84	51.16
150-175	1.0	10.0	17.0	22.0	15.0	10.0	18.0	20.0	19.0	15.0	175	16.20	65.03	34.97
175-200	10.0	17.0	22.0	15.0	14.0	11.0	19.0	11.0	3.0		200	12.47	77.51	22.49
200-225	17.0	22.0	15.0	14.0	8.0	11.0	11.0	7.0			225	8.75	86.26	13.74
225-250	22.0	15.0	14.0	8.0	5.0	11.0	9.0	1.0			250	5.91	92.17	7.83
250-275	15.0	14.0	8.0	5.0	5.0	11.0					275	4.05	96.22	3.78
275-300	14.0	8.0	5.0	5.0	3.0	7.0					300	2.64	98.85	1.15
>300	21.0	13.0	8.0	3.0							>300	1.15	100.00	0.00
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.00		

Sunnyvale WPCP - Dewatered Grit - July 18, 2013														
Sieve Size >	1/4	1/8	#12	#20	#50	#70	#100	#140	#200	#270	% Total in SES Range		Range	
fxd solids fraction	2.35	4.38	9.85	17.25	46.89	9.59	5.09	2.90	1.13	0.58				
												%		
											SES	Percent	Cumulative	
											(micron)	Retained	% Retained	% >
SES Interval											25			100
25-50											50	0.00	0.00	100.00
50-75											75	0.00	0.00	100.00
75-100						2.0	7.0		58.0	72.0	100	1.62	1.62	98.38
100-125					3.0	4.0	14.0	12.0	10.0	28.0	125	3.13	4.75	95.25
125-150				3.0	8.0	4.0	15.0	36.0	10.0		150	6.57	11.32	88.68
150-175			3.0	8.0	18.0	6.0	13.0	37.0	10.0		175	12.54	23.86	76.14
175-200		3.0	8.0	18.0	16.0	15.0	13.0	15.0	10.0		200	14.17	38.03	61.97
200-225	3.0	8.0	18.0	16.0	11.0	22.0	12.0		2.0		225	12.85	50.89	49.11
225-250	8.0	18.0	16.0	11.0	7.0	18.0	12.0				250	10.07	60.95	39.05
250-275	18.0	16.0	11.0	7.0	7.0	18.0	12.0				275	9.03	69.99	30.01
275-300	16.0	11.0	7.0	7.0	6.0	11.0	2.0				300	6.72	76.71	23.29
300-325	11.0	7.0	7.0	6.0	5.0						325	4.63	81.34	18.66
325-350	7.0	7.0	6.0	5.0	4.0						350	3.80	85.14	14.86
350-375	7.0	6.0	5.0	4.0	3.0						375	3.02	88.16	11.84
375-400	6.0	5.0	4.0	3.0	3.0						400	2.68	90.84	9.16
400-425	5.0	4.0	3.0	3.0	3.0						425	2.51	93.35	6.65
425-450	4.0	3.0	3.0	3.0	3.0						450	2.44	95.79	4.21
450-475	3.0	3.0	3.0	3.0	3.0						475	2.42	98.22	1.78
>475	12.0	9.0	6.0	3.0							>475	1.78	100.00	0.00
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.00		

Influent									
Median									
Size	Size Range								
(microns)	(microns)		16-Jul-13	17-Jul-13	18-Jul-13				
62.5	50	75	81	80	83				
87.5	75	100	119	113	121				
125	100	150	149	134	131				
175	150	200	189	128	142				
250	200	300	213	164	152				
560	300	820	239	135	138				

A-7 Median SES Versus Median Physical Size Data

Primary Sludge									
Median									
Size	Size Range		10 14 12	47 1.1 42	10 1-1 12				
(microns)	(microns)		16-Jul-13	17-Jul-13	18-Jul-13				
62.5	50	75	92	114	108				
87.5	75	100	120	121	123				
125	100	150	153	118	140				
175	150	200	145	127	162				
250	200	300	139	156	177				
560	300	820	166	139	151				

Dewatered Grit								
Median Size (microns)	Size Range (microns)		16-Jul-13	17-Jul-13	18-Jul-13			
62.5	50	75	96	104	92			
87.5	75	100	103	106	90			
125	100	150	147	154	153			
175	150	200	198	188	177			
250	200	300	257	244	222			
560	300	820	227	237	216			

Appendix B – Calculations

Drag Coefficient (C_d)

 $24/N_R$ + 3/sqrt N_R + 0.34

Reynolds number (N_R)

(settling velocity of particle)(diameter of particle)/kinematic viscosity

Stoke's Law

Settling velocity (m/s) = $g(sg_p - 1)d_p^2/18v$

Where g = acceleration due to gravity (9.81 m/s²) $sg_p = specific gravity of particle$ $d_p = diameter of particle$ v = kinematic viscosity (m²/s)

% Total Solids

(grams dry weight/grams wet weight)*100

% Total Volatile Solids

[(grams dry weight - grams ash weight)/ grams dry weight]*100